Functionals with the $H$-property in the Sobolev space $W_1^1$
Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Special classes of convex functionals in the Sobolev space $W_1^1$ are under consideration. Functionals in these classes are shown to have the so-called $H$-property: if a sequence of points in the domain of a functional converges weakly and the values of the functional at these points converge, then this sequence converges strongly in $W_1^1$.
@article{SM_2004_195_6_a5,
     author = {A. S. Leonov},
     title = {Functionals with the $H$-property in the {Sobolev} space~$W_1^1$},
     journal = {Sbornik. Mathematics},
     pages = {879--896},
     year = {2004},
     volume = {195},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Functionals with the $H$-property in the Sobolev space $W_1^1$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 879
EP  - 896
VL  - 195
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/
LA  - en
ID  - SM_2004_195_6_a5
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Functionals with the $H$-property in the Sobolev space $W_1^1$
%J Sbornik. Mathematics
%D 2004
%P 879-896
%V 195
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/
%G en
%F SM_2004_195_6_a5
A. S. Leonov. Functionals with the $H$-property in the Sobolev space $W_1^1$. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/

[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[2] Leonov A. S., “Obobschenie metoda maksimalnoi entropii dlya resheniya nekorrektnykh zadach”, Sib. matem. zhurn., 41:4 (2000), 863–872 | MR | Zbl

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[4] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[5] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[6] Amato U., Hughes W., “Maximum entropy regularization of Fredholm integral equations of the first kind”, Inverse Problems, 7 (1991), 793–808 | DOI | MR | Zbl