@article{SM_2004_195_6_a5,
author = {A. S. Leonov},
title = {Functionals with the $H$-property in the {Sobolev} space~$W_1^1$},
journal = {Sbornik. Mathematics},
pages = {879--896},
year = {2004},
volume = {195},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/}
}
A. S. Leonov. Functionals with the $H$-property in the Sobolev space $W_1^1$. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/
[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[2] Leonov A. S., “Obobschenie metoda maksimalnoi entropii dlya resheniya nekorrektnykh zadach”, Sib. matem. zhurn., 41:4 (2000), 863–872 | MR | Zbl
[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[4] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR
[5] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR
[6] Amato U., Hughes W., “Maximum entropy regularization of Fredholm integral equations of the first kind”, Inverse Problems, 7 (1991), 793–808 | DOI | MR | Zbl