Functionals with the $H$-property in the Sobolev space~$W_1^1$
Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896

Voir la notice de l'article provenant de la source Math-Net.Ru

Special classes of convex functionals in the Sobolev space $W_1^1$ are under consideration. Functionals in these classes are shown to have the so-called $H$-property: if a sequence of points in the domain of a functional converges weakly and the values of the functional at these points converge, then this sequence converges strongly in $W_1^1$.
@article{SM_2004_195_6_a5,
     author = {A. S. Leonov},
     title = {Functionals with the $H$-property in the {Sobolev} space~$W_1^1$},
     journal = {Sbornik. Mathematics},
     pages = {879--896},
     publisher = {mathdoc},
     volume = {195},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Functionals with the $H$-property in the Sobolev space~$W_1^1$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 879
EP  - 896
VL  - 195
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/
LA  - en
ID  - SM_2004_195_6_a5
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Functionals with the $H$-property in the Sobolev space~$W_1^1$
%J Sbornik. Mathematics
%D 2004
%P 879-896
%V 195
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/
%G en
%F SM_2004_195_6_a5
A. S. Leonov. Functionals with the $H$-property in the Sobolev space~$W_1^1$. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/