Functionals with the $H$-property in the Sobolev space~$W_1^1$
Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896
Voir la notice de l'article provenant de la source Math-Net.Ru
Special classes of convex functionals in the Sobolev space $W_1^1$ are under consideration. Functionals in these classes are shown to have the so-called $H$-property: if a sequence of points in the domain of a functional converges weakly and the values of the functional at these points converge, then this sequence converges strongly in $W_1^1$.
@article{SM_2004_195_6_a5,
author = {A. S. Leonov},
title = {Functionals with the $H$-property in the {Sobolev} space~$W_1^1$},
journal = {Sbornik. Mathematics},
pages = {879--896},
publisher = {mathdoc},
volume = {195},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/}
}
A. S. Leonov. Functionals with the $H$-property in the Sobolev space~$W_1^1$. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 879-896. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a5/