On wild division algebras over fields of power series
Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 783-817 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain special classes of division algebras over the field of Laurent power series with arbitrary residue field are studied. We call algebras in these classes split and well-split algebras. These classes are shown to contain the group of tame division algebras. For the class of well-split division algebras we prove a decomposition theorem which is a generalization of the well-known decomposition theorems of Jacob and Wadsworth for tame division algebras. For both classes we introduce the notion of a $\delta$-map and develop the technique of $\delta$-maps for division algebras in these classes. Using this technique we prove decomposition theorems, reprove several old well-known results of Saltman, and prove Artin's conjecture on the period and index in the local case: the exponent of a division algebra $A$ over a $C_2$-field $F$ is equal to the index of $A$ if $F=F_1((t))$, where $F_1$ is a $C_1$-field. In addition we obtain several results on split division algebras, which, we hope, will help in further research of wild division algebras.
@article{SM_2004_195_6_a1,
     author = {A. B. Zheglov},
     title = {On~wild division algebras over fields of power series},
     journal = {Sbornik. Mathematics},
     pages = {783--817},
     year = {2004},
     volume = {195},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a1/}
}
TY  - JOUR
AU  - A. B. Zheglov
TI  - On wild division algebras over fields of power series
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 783
EP  - 817
VL  - 195
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_6_a1/
LA  - en
ID  - SM_2004_195_6_a1
ER  - 
%0 Journal Article
%A A. B. Zheglov
%T On wild division algebras over fields of power series
%J Sbornik. Mathematics
%D 2004
%P 783-817
%V 195
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2004_195_6_a1/
%G en
%F SM_2004_195_6_a1
A. B. Zheglov. On wild division algebras over fields of power series. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 783-817. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a1/

[1] Jacob B., Wadsworth A., “Division algebras over Henselian fields”, J. Algebra, 128 (1990), 126–179 | DOI | MR | Zbl

[2] Platonov V. P., Yanchevskii V. I., “Konechnomernye algebry s deleniem”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 77, VINITI, M., 1991, 144–262 | MR

[3] Saltman D. J., “Division algebras over discrete valued fields”, Comm. Algebra, 8 (1980), 1749–1774 | DOI | MR | Zbl

[4] Tignol J.-P., “Algebres a division et extensions de corps sauvagement ramifiees de degre premier”, J. Reine Angew. Math., 404 (1990), 1–38 | MR | Zbl

[5] Schilling O. F. S., The theory of valuations, Math. Surveys Monogr., 4, Amer. Math. Soc., Providence, RI, 1950 | MR | Zbl

[6] Zheglov A. B., “O klassifikatsii dvumernykh lokalnykh tel”, Izv. RAN. Ser. matem., 65:1 (2001), 25–60 | MR | Zbl

[7] Azumaya G., “On maximally central algebras”, Nagoya J. Math., 2 (1951), 119–150 | MR | Zbl

[8] Cohen I., “On the structure and ideal theory of complete local rings”, Trans. Amer. Math. Soc., 59 (1946), 54–106 | DOI | MR | Zbl

[9] Aravire R., Jacob B., “$p$-algebras over maximally complete fields”, K-theory and algebraic geometry: connections with quadratic forms and division algebras, Summer Research Institute on quadratic forms and division algebras (July 6–24, 1992, University of California, Santa Barbara, CA, USA), Proc. Symp. Pure Math., 58, Part 2, eds. B. Jacob et al., Amer. Math. Soc., Providence, RI, 1995, 27–49 | MR | Zbl

[10] de Jong A. J., The period-index problem for the Brauer group of an algebraic surface, Preprint http://www-math.mit.edu/d̃ejong

[11] Albert A. A., “Simple algebras of degree $p^e$ over a centrum of characteristic $p$”, Trans. Amer. Math. Soc., 40 (1936), 112–126 | DOI | MR | Zbl

[12] Pierce R. S., Associative algebras, Springer-Verlag, New York, 1982 | MR | Zbl

[13] Morandi P., “Henselisation of a valued division algebra”, J. Algebra, 122 (1989), 232–243 | DOI | MR | Zbl