Classification of affine homogeneous spaces of complexity~one
Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 765-782

Voir la notice de l'article provenant de la source Math-Net.Ru

The complexity of an action of a reductive algebraic group $G$ on an algebraic variety $X$ is the codimension of a generic $B$-orbit in $X$, where $B$ is a Borel subgroup of $G$. Affine homogeneous spaces $G/H$ of complexity 1 are classified in this paper. These results are the natural continuation of the earlier classification of spherical affine homogeneous spaces, that is, spaces of complexity 0.
@article{SM_2004_195_6_a0,
     author = {I. V. Arzhantsev and O. V. Chuvashova},
     title = {Classification of affine homogeneous spaces of complexity~one},
     journal = {Sbornik. Mathematics},
     pages = {765--782},
     publisher = {mathdoc},
     volume = {195},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a0/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
AU  - O. V. Chuvashova
TI  - Classification of affine homogeneous spaces of complexity~one
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 765
EP  - 782
VL  - 195
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_6_a0/
LA  - en
ID  - SM_2004_195_6_a0
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%A O. V. Chuvashova
%T Classification of affine homogeneous spaces of complexity~one
%J Sbornik. Mathematics
%D 2004
%P 765-782
%V 195
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_6_a0/
%G en
%F SM_2004_195_6_a0
I. V. Arzhantsev; O. V. Chuvashova. Classification of affine homogeneous spaces of complexity~one. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 765-782. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a0/