Classification of affine homogeneous spaces of complexity~one
Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 765-782
Voir la notice de l'article provenant de la source Math-Net.Ru
The complexity of an action of a reductive algebraic group $G$ on an algebraic variety $X$
is the codimension of a generic $B$-orbit in $X$, where
$B$ is a Borel subgroup of $G$. Affine homogeneous spaces $G/H$ of complexity 1 are classified in this paper. These results are the natural continuation of the earlier classification of spherical affine homogeneous spaces, that is, spaces of complexity 0.
@article{SM_2004_195_6_a0,
author = {I. V. Arzhantsev and O. V. Chuvashova},
title = {Classification of affine homogeneous spaces of complexity~one},
journal = {Sbornik. Mathematics},
pages = {765--782},
publisher = {mathdoc},
volume = {195},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_6_a0/}
}
I. V. Arzhantsev; O. V. Chuvashova. Classification of affine homogeneous spaces of complexity~one. Sbornik. Mathematics, Tome 195 (2004) no. 6, pp. 765-782. http://geodesic.mathdoc.fr/item/SM_2004_195_6_a0/