On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector
Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 723-764 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a 1-periodic function $f$ of finite smoothness and a Diophantine vector $\alpha$ the solubility problem is studied for the additive cohomological equation on the torus $$ w(T_\alpha x)-w(x)=f(x)-\int_{\mathbb T^d}f(t)\,dt, $$ where $T_\alpha x=x+\alpha\pmod1$ is the shift of the torus $\mathbb T^d$ by the vector $\alpha$ and $w$ is an unknown measurable function. Necessary and sufficient conditions are obtained for the conjugacy of a linear flow on the $(d+1)$-torus to the reparametrized flow $$ \begin{cases} \dot x=\dfrac\alpha{F(x,y)}\,,\\ \dot y=\dfrac1{F(x,y)}\,, \end{cases} $$ where $F(x,y)$ is a positive 1-periodic function of finite smoothness.
@article{SM_2004_195_5_a5,
     author = {A. V. Rozhdestvenskii},
     title = {On~the additive cohomological equation and time change for a~linear flow on the torus with {a~Diophantine} frequency vector},
     journal = {Sbornik. Mathematics},
     pages = {723--764},
     year = {2004},
     volume = {195},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_5_a5/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 723
EP  - 764
VL  - 195
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_5_a5/
LA  - en
ID  - SM_2004_195_5_a5
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector
%J Sbornik. Mathematics
%D 2004
%P 723-764
%V 195
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2004_195_5_a5/
%G en
%F SM_2004_195_5_a5
A. V. Rozhdestvenskii. On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector. Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 723-764. http://geodesic.mathdoc.fr/item/SM_2004_195_5_a5/

[1] Kirillov A. A., “Dinamicheskie sistemy, faktory i predstavleniya grupp”, UMN, 22:5 (1967), 67–80 | MR | Zbl

[2] Stepin A. M., “O kogomologiyakh grupp avtomorfizmov prostranstva Lebega”, Funkts. analiz i ego prilozh., 5:2 (1971), 91–92 | MR | Zbl

[3] Moschevitin N. G., “O sovmestnykh diofantovykh priblizheniyakh. Vektory zadannogo diofantova tipa”, Matem. zametki, 61:5 (1997), 706–716 | MR | Zbl

[4] Shmidt V. M., Diofantovy priblizheniya, Mir, M., 1983 | MR

[5] Stein E. M., “On limits of sequences of operators”, Ann. of Math., 74 (1961), 140–170 | DOI | MR | Zbl

[6] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[7] Zigmund A., Trigonometricheskie ryady, t. 1, 2, Mir, M., 1965 | MR

[8] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatlit, M., 1958 | MR

[9] Maligranda L., Karlovich A. Yu., “On the interpolation constant for Orlicz spaces”, Proc. Amer. Math. Soc., 129:9 (2001), 2727–2739 | DOI | MR | Zbl

[10] Wainger S., Special trigonometric series in $k$ dimensions, Mem. Amer. Math. Soc., 59, 1965 | MR | Zbl

[11] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[12] Pichugov S. A., “Otsenki norm operatorov, nepreryvnykh po mere”, Matem. zametki, 50:1 (1991), 146–148 | MR | Zbl

[13] Pichugov S. A., “Translation invariant operators in linear metric spaces”, Anal. Math., 18:3 (1992), 237–248 | DOI | MR | Zbl

[14] Rozhdestvenskii A. V., “Ob absolyutno nepreryvnykh slabo peremeshivayuschikh kotsiklakh nad irratsionalnymi povorotami okruzhnosti”, Matem. sb., 194:5 (2003), 139–156 | MR | Zbl

[15] Stechkin S. B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[16] Herman M. R., “Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations”, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5–233 | DOI | MR | Zbl

[17] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947

[18] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[19] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93 (1953), 763–766 | MR | Zbl

[20] Anosov D. V., “Ob additivnom funktsionalnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1259–1274 | MR | Zbl

[21] Fayad B. R., “Weak mixing for reparametrized linear flows on the torus”, Ergodic Theory Dynam. Systems, 22:2 (2002) | DOI | MR | Zbl

[22] Stepin A. M., “O gomologicheskom uravnenii teorii dinamicheskikh sistem”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Tematicheskii mezhvuzovskii sbornik, Izd-vo Yaroslavskogo gos. un-ta, Yaroslavl, 1982, 106–117

[23] Iwanik A., Serafin J., “Most monothetic extensions are rank-1”, Colloq. Math., 56:1 (1993), 63–76 | MR

[24] Moore C. C., Schmidt K., “Coboundaries and homomorphism for nonsingular actions and a problem of H. Helson”, Proc. London Math. Soc. (3), 40 (1980), 443–475 | DOI | MR | Zbl

[25] Anzai H., “Ergodic skew product transformations on the torus”, Osaka J. Math., 3 (1951), 83–99 | MR | Zbl

[26] Gottschalk W. H., Hedlund G. A., Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955 | MR | Zbl