Uniform approximations by bianalytic functions on arbitrary compact subsets of~$\mathbb C$
Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 687-709

Voir la notice de l'article provenant de la source Math-Net.Ru

Each continuous function on an arbitrary compact subset $X$ of $\mathbb C$ that is bianalytic in the interior of $X$ is proved to be uniformly approximable on $X$ by functions bianalytic in neighbourhoods of $X$.
@article{SM_2004_195_5_a3,
     author = {M. Ya. Mazalov},
     title = {Uniform approximations by bianalytic functions on arbitrary compact subsets of~$\mathbb C$},
     journal = {Sbornik. Mathematics},
     pages = {687--709},
     publisher = {mathdoc},
     volume = {195},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Uniform approximations by bianalytic functions on arbitrary compact subsets of~$\mathbb C$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 687
EP  - 709
VL  - 195
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/
LA  - en
ID  - SM_2004_195_5_a3
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Uniform approximations by bianalytic functions on arbitrary compact subsets of~$\mathbb C$
%J Sbornik. Mathematics
%D 2004
%P 687-709
%V 195
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/
%G en
%F SM_2004_195_5_a3
M. Ya. Mazalov. Uniform approximations by bianalytic functions on arbitrary compact subsets of~$\mathbb C$. Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 687-709. http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/