Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$
Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 687-709 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Each continuous function on an arbitrary compact subset $X$ of $\mathbb C$ that is bianalytic in the interior of $X$ is proved to be uniformly approximable on $X$ by functions bianalytic in neighbourhoods of $X$.
@article{SM_2004_195_5_a3,
     author = {M. Ya. Mazalov},
     title = {Uniform approximations by bianalytic functions on arbitrary compact subsets of~$\mathbb C$},
     journal = {Sbornik. Mathematics},
     pages = {687--709},
     year = {2004},
     volume = {195},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 687
EP  - 709
VL  - 195
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/
LA  - en
ID  - SM_2004_195_5_a3
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$
%J Sbornik. Mathematics
%D 2004
%P 687-709
%V 195
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/
%G en
%F SM_2004_195_5_a3
M. Ya. Mazalov. Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$. Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 687-709. http://geodesic.mathdoc.fr/item/SM_2004_195_5_a3/

[1] Balk M. B., “Polianaliticheskie funktsii i ikh obobscheniya”, Itogi nauki i tekhniki. Fundament. napr., 85, VINITI, M., 1991, 187–246 | MR

[2] Verdera J., “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pacific J. Math., 159 (1993), 379–396 | MR | Zbl

[3] Verdera J., “The uniform approximation problem for the square of the Cauchy–Riemann operator”, Lecture Notes in Math., 1574, 1994, 122–123 | MR

[4] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR | Zbl

[5] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | MR | Zbl

[6] Deny J., “Systémes totaux de functions harmoniques”, Ann. Inst. Fourier (Grenoble), 1 (1949), 103–113 | MR

[7] Trent T., Wang J. L., “Uniform approximation by rational modules on nowhere dense sets”, Proc. Amer. Math. Soc., 81 (1981), 62–64 | DOI | MR | Zbl

[8] Carmona J. J., “Mergelyan approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl

[9] Wang J. L., “A localization operator for rational modules”, Rocky Mountain J. Math., 19:4 (1989), 999–1002 | MR | Zbl

[10] Mazalov M. Ya., “Ravnomernoe priblizhenie funktsii, nepreryvnykh na proizvolnom kompakte v $\mathbb C$ i analiticheskikh vnutri kompakta, funktsiyami, bianaliticheskimi v ego okrestnosti”, Matem. zametki, 69:2 (2001), 245–261 | MR | Zbl

[11] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[12] Paramonov P. V., “O garmonicheskikh priblizheniyakh v $\mathbb C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR | Zbl

[13] Stein I., Singulyarnye integraly i differentsialnye svoistva funkitsii, Mir, M., 1973 | MR

[14] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Matem. sb., 186:9 (1995), 97–112 | MR | Zbl

[15] Nguyen Xuan Uy., “An extremal problem on singular integrals”, Amer. J. Math., 102:2 (1980), 279–290 | DOI | MR | Zbl

[16] Harvey R., Polking J., “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl

[17] David G., “Wavelets and singular integrals on curves and surfaces”, Lecture Notes in Math., 1465, Springer-Verlag,, New York, 1991 | MR | Zbl