Parallelotopes of non-zero width
Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 669-686

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1959, Venkov introduced a concept of polytope of non-zero width in the direction of a subspace and studied parallelotopes of non-zero width. In the present paper properties of a parallelotope of non-zero width in the direction of a straight line are investigated. In particular, it is proved that a parallelotope of non-zero width in the direction of a straight line is the Minkowski sum of a parallelotope of width zero and a segment of this line. Necessary and sufficient conditions ensuring that the sum of a parallelotope and a line segment is again a parallelotope are presented.
@article{SM_2004_195_5_a2,
     author = {V. P. Grishukhin},
     title = {Parallelotopes of non-zero width},
     journal = {Sbornik. Mathematics},
     pages = {669--686},
     publisher = {mathdoc},
     volume = {195},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_5_a2/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Parallelotopes of non-zero width
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 669
EP  - 686
VL  - 195
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_5_a2/
LA  - en
ID  - SM_2004_195_5_a2
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Parallelotopes of non-zero width
%J Sbornik. Mathematics
%D 2004
%P 669-686
%V 195
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_5_a2/
%G en
%F SM_2004_195_5_a2
V. P. Grishukhin. Parallelotopes of non-zero width. Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 669-686. http://geodesic.mathdoc.fr/item/SM_2004_195_5_a2/