Canonical maps of pointed nodal curves
Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 615-642 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1983 Knudsen proved that the triple-canonical map of a pointed Deligne–Mumford stable curve is an embedding, and the double-canonical map has no base points. The same question is discussed here for the canonical map. The answer can be stated virtually purely topologically in terms of the dual graph, with the exception of the case of hyperelliptic curves.
@article{SM_2004_195_5_a0,
     author = {I. V. Artamkin},
     title = {Canonical maps of pointed nodal curves},
     journal = {Sbornik. Mathematics},
     pages = {615--642},
     year = {2004},
     volume = {195},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_5_a0/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Canonical maps of pointed nodal curves
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 615
EP  - 642
VL  - 195
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_5_a0/
LA  - en
ID  - SM_2004_195_5_a0
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Canonical maps of pointed nodal curves
%J Sbornik. Mathematics
%D 2004
%P 615-642
%V 195
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2004_195_5_a0/
%G en
%F SM_2004_195_5_a0
I. V. Artamkin. Canonical maps of pointed nodal curves. Sbornik. Mathematics, Tome 195 (2004) no. 5, pp. 615-642. http://geodesic.mathdoc.fr/item/SM_2004_195_5_a0/

[1] Manin Yu. I., Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[2] Knudsen F., “Projectivity of the moduli space of stable curves. II”, Math. Scand., 52 (1983), 161–199 | MR | Zbl

[3] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl

[4] Kapranov M., “Veronese curves and Grothendieck–Knudsen mooduli space $\overline M_{0,n}$”, J. Algebraic Geom., 2 (1993), 239–262 | MR | Zbl

[5] Tyurin A. N., Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsiya, In-t kompyuternykh issledovanii, M.–Izhevsk

[6] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[7] Tyurin A. N., “O periodakh kvadratichnykh differentsialov”, UMN, 33:6 (1978), 149–195 | MR | Zbl