Weighted anisotropic Korn's inequality for a junction of a plate and a rod
Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 553-583 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Korn's inequality is proved for an elastic body obtained by attaching to a plate several rods with clamped farther ends. The thickness of the plate and the diameters of the rods are characterized by a single small parameter $h$, which also gauges the distinctions in the elastic properties of the elements of the junction. The selection of the weighted anisotropic norms distinguishing the longitudinal and transverse directions in the plate and in a rod ensures the asymptotic accuracy of the inequality, which is substantiated by examples of particular constructions. New results on single plates and rods are obtained in the course of the proof.
@article{SM_2004_195_4_a3,
     author = {S. A. Nazarov},
     title = {Weighted anisotropic {Korn's} inequality for a~junction of a~plate and a~rod},
     journal = {Sbornik. Mathematics},
     pages = {553--583},
     year = {2004},
     volume = {195},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_4_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Weighted anisotropic Korn's inequality for a junction of a plate and a rod
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 553
EP  - 583
VL  - 195
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_4_a3/
LA  - en
ID  - SM_2004_195_4_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Weighted anisotropic Korn's inequality for a junction of a plate and a rod
%J Sbornik. Mathematics
%D 2004
%P 553-583
%V 195
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2004_195_4_a3/
%G en
%F SM_2004_195_4_a3
S. A. Nazarov. Weighted anisotropic Korn's inequality for a junction of a plate and a rod. Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 553-583. http://geodesic.mathdoc.fr/item/SM_2004_195_4_a3/

[1] Fiziki prodolzhayut shutit, Mir, M., 1968

[2] Friedrichs K. O., “On the boundary value problems of the theory of elasticity and Korn's inequality”, Ann. of Math. (2), 48 (1947), 441–471 | DOI | MR | Zbl

[3] Nečas J., Les méthodes in théorie des équations elliptiques, Masson–Academia, Paris–Prague, 1967

[4] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[5] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, UMN, 43:5 (1988), 55–98 | MR | Zbl

[6] Cioranescu D., Oleinik O. A., Tronel G., “On Korn's inequalities for frame type structures and junctions”, C. R. Acad. Sci. Paris Sér. I Math., 309 (1989), 591–596 | MR | Zbl

[7] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic representation of elastic fields in a multi-structure”, Asymptot. Anal., 11 (1995), 343–415 | MR | Zbl

[8] Kozlov V. A., Maz'ya V. G., Movchan A. B., Asymptotic analysis of fields in multi-structures, Clarendon Press, Oxford, 1999 | MR | Zbl

[9] Nazarov S. A., “Neravenstva tipa neravenstv Korna dlya uprugikh multistruktur”, UMN, 50:6 (1995), 197–198 | MR | Zbl

[10] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Methods Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Nazarov S. A., “Asimptotika reshenii zadachi teorii uprugosti dlya trekhmernogo tela s tonkimi otrostkami”, Dokl. RAN, 352:4 (1997), 458–461 | MR | Zbl

[12] Shoikhet B. A., “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, Prikl. matem. i mekh., 37:5 (1973), 913–924 | MR

[13] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestn. SPbGU. Ser. 1, 1992, no. 2(8), 19–24

[14] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Problemy matematicheskogo analiza, 17, Izd-vo SPbGU, SPb., 1997, 101–152

[15] Nazarov S. A., “Asimptoticheskii analiz proizvolno anizotropnoi plastiny peremennoi tolschiny (pologoi obolochki)”, Matem. sb., 191:7 (2000), 129–159 | MR | Zbl

[16] Nazarov S. A., Slutskii A. S., “Odnomernye uravneniya deformatsii tonkikh slaboiskrivlennykh sterzhnei. Asimptoticheskii analiz i obosnovanie”, Izv. RAN. Ser. matem., 64:3 (2000), 97–131 | MR

[17] Akimova E. A., Nazarov S. A., Chechkin G. A., “Vesovoe neravenstvo Korna: protsedura “tetris”, obsluzhivayuschaya proizvolnuyu periodicheskuyu plastinu”, Dokl. RAN, 380:4 (2001), 439–442 | MR | Zbl

[18] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl

[19] Caillerie D., “The effect of a thin inclusion of high rigidity in an elastic body”, Math. Methods Appl. Sci., 2:3 (1980), 251–270 | DOI | MR | Zbl

[20] Ciarlet P. G., Plates and junctions in elastic multi-structures: an asymptotic analysis, Masson, Paris, 1988 | MR

[21] Ciarlet P. G., Le Dret H., Nzengwa R., “Modelisation de la jonction entre un corps elastique tridimensionnel et une plaque”, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 55–58 | MR | Zbl

[22] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic analysis of a mixed boundary value problem in a multi-structure”, Asymptot. Anal., 8 (1994), 105–143 | MR | Zbl

[23] Cioranescu D., Oleinik O. A., Tronel G., “Korn's inequalities for frame type structures and junctions with sharp estimates for the constants”, Asymptot. Anal., 8 (1994), 1–14 | MR | Zbl

[24] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei. 1, 2”, Trudy sem. im. I. G. Petrovskogo, 18, Izd-vo MGU, M., 1995, 3–78; 20, 1997, 155–195 | Zbl

[25] Nazarov S. A., “Junction problem of bee-on-ceiling type in the theory of anisotropic elasticity”, C. R. Acad. Sci. Paris Sér. I Math., 320:11 (1995), 1419–1424 | MR | Zbl

[26] Argatov I. I., Nazarov S. A., “Asimptoticheskii analiz na soedineniyakh oblastei razlichnykh predelnykh razmernostei. Telo, pronzennoe tonkim sterzhnem”, Izv. RAN. Ser. matem., 60:1 (1996), 3–36 | MR | Zbl

[27] Argatov I. I., Nazarov S. A., “Asimptoticheskii analiz na soedineniyakh oblastei razlichnykh predelnykh razmernostei. Uprugoe telo, pronzennoe tonkimi sterzhnyami”, Problemy matematicheskogo analiza, 20, Nauchnaya kniga, Novosibirsk, 2000, 3–55 | MR

[28] Melnik T. A., Nazarov S. A., “Asimptoticheskii analiz zadachi Neimana na soedinenii tela s tonkimi tyazhelymi sterzhnyami”, Algebra i analiz, 12:2 (2000), 188–238 | MR

[29] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[30] Cioranescu D., Saint Jean Paulin J., “Structures très minces en elasticité linéarisée: tours et grillages”, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 41–46 | MR | Zbl

[31] Panasenko G. P., “Asimptoticheskie resheniya sistemy teorii uprugosti dlya sterzhnevykh i karkasnykh struktur”, Matem. sb., 183:1 (1992), 89–113 | Zbl

[32] Panassenko G. P., “Asymptotic analysis of bar systems. 1, 2”, Russian J. Math. Phys., 2:3 (1994), 325–352 ; 4:1 (1996), 87–116 | MR | MR

[33] Cioranescu D., Jean Paulin J. S., Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, Berlin, 1999 | MR | Zbl

[34] Zhikov V. V., Homogenization of elasticity problems on singular structures, Preprint No 1, State Pedagogical Univ., Vladimir, 2000

[35] Le Dret H., “Modeling of the junction between two rods”, J. Math. Pures Appl. (9), 68 (1989), 365–397 | MR | Zbl

[36] Le Dret H., Problemes variationnels dans les multi-domains. Modélisation des jonctions et applications, Masson, Paris, 1991 | MR | Zbl

[37] Nazarov S. A., Slutskii A. S., “Asimptotika chastot sobstvennykh kolebanii uprugikh balok, soedinennykh v forme bukvy $\Pi$”, Dokl. RAN, 380:1 (2001), 23–26 | MR

[38] Nazarov S. A., Slutskii A. S., “Proizvolnye ploskie sistemy anizotropnykh balok”, Trudy MIAN, 236, 2002, 234–261 | Zbl

[39] Nazarov S. A., Plamenevskii B. A., “Asimptotika spektra zadachi Neimana v singulyarno vyrozhdayuscheisya tonkoi oblasti. 1”, Algebra i analiz, 2:2 (1990), 85–111 | MR | Zbl