Finite parametrization of solutions of equations in a free
Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 521-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the preceding paper of the author parametrizing functions Fi, Th, Ro were introduced depending on word variables, positive-integer variables, and variables whose values are finite sequences of positive-integer variables. With the help of the parametrizing functions Fi, Th, Ro finite formulae are written out for the family of solutions of every equation of the form $\varphi(x_1,x_2,x_3) x_4=\psi(x_1,x_2,x_3) x_5$, where $\varphi(x_1,x_2,x_3)$ and $\psi(x_1,x_2,x_3)$ are arbitrary words in the alphabet $x_1$, $x_2$, $x_3$ in a free monoid.
@article{SM_2004_195_4_a2,
     author = {G. S. Makanin},
     title = {Finite parametrization of solutions of~equations in a~free},
     journal = {Sbornik. Mathematics},
     pages = {521--552},
     year = {2004},
     volume = {195},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_4_a2/}
}
TY  - JOUR
AU  - G. S. Makanin
TI  - Finite parametrization of solutions of equations in a free
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 521
EP  - 552
VL  - 195
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_4_a2/
LA  - en
ID  - SM_2004_195_4_a2
ER  - 
%0 Journal Article
%A G. S. Makanin
%T Finite parametrization of solutions of equations in a free
%J Sbornik. Mathematics
%D 2004
%P 521-552
%V 195
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2004_195_4_a2/
%G en
%F SM_2004_195_4_a2
G. S. Makanin. Finite parametrization of solutions of equations in a free. Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 521-552. http://geodesic.mathdoc.fr/item/SM_2004_195_4_a2/

[1] Khmelevskii Yu. I., “Reshenie uravnenii v slovakh s tremya neizvestnymi”, Dokl. AN SSSR, 177 (1967), 1023–1025 | MR

[2] Khmelevskii Yu. I., Uravneniya v svobodnoi polugruppe, Trudy MIAN, 107, 1971

[3] Makanin G. S., “On general solution of equations in a free semigroup”, Word equations and related topics, 2nd International Workshop (Rouen, France, 1991), Lecture Notes in Comput. Sci., 677, Springer-Verlag, Berlin, 1993, 1–5 | MR | Zbl

[4] Makanin G. S., Abdulrab H., Maksimenko M., “Formal parametric equations”, Lecture Notes in Comput. Sci., 965, 1995, 353–362 | MR

[5] Makanin G. S., “Multiplication of natural number parameters and equations in a free semigroup”, Trans. Amer. Math. Soc., 348:12 (1996), 4813–4824 | DOI | MR | Zbl

[6] Makanin G. S., Abdulrab H., Goralcik P., “Functions for the general solution of parametric word equations”, Logical foundations of computer science, 4th International Symposium (Yaroslavl, Russia, 1997), Lecture Notes in Comput. Sci., 1234, Springer-Verlag, Berlin, 1997, 189–202 | MR | Zbl

[7] Makanin G. S., Makanina T. A., “Functions for parametrization of solutions of an equation in a free monoid”, Trans. Amer. Math. Soc., 352:1 (2000), 1–54 | DOI | MR | Zbl

[8] Makanin G. S., Makanina T. A., “Parametrizatsiya reshenii nekotorykh uravnenii kvadratov v svobodnom monoide”, Diskret. matem., 11:3 (1999), 133–148 | MR | Zbl

[9] Makanin G. S., Makanina T. A., “Parametrization of solutions of parametric equation in free monoid”, Theoret. Comput. Sci., 242 (2000), 403–475 | DOI | MR | Zbl

[10] Makanin G. S., “Parametrizatsiya reshenii uravneniya $x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1$ v svobodnoi gruppe”, Diskret. matem., 13:2 (2001), 35–88 | MR | Zbl

[11] Makanin G. S., Savushkina A. G., “Uravnenie v svobodnoi gruppe, opredelyayuschee krashenye kosy”, Matem. zametki, 70:4 (2001), 591–602 | MR | Zbl

[12] Makanin G. S., “Konechnaya parametrizatsiya reshenii uravnenii v svobodnom monoide. I”, Matem. sb., 195:2 (2004), 41–90 | MR | Zbl