Group classification of the eikonal equation for
Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 479-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equation $(\nabla\psi)^2=1/v^2(x,y,z)$, known as the eikonal equation, is studied. This is the characteristic equation for the wave equations in an inhomogeneous medium, which plays a central role in the description of the geometry of the rays and the wave fronts. A full geometric classification of the family of eikonal equations is carried out (an equation is determined by the function $v(x,y,z)$, which has the meaning of the propagation velocity of a perturbation in the medium). In the cases of equations with linear or quadratic velocity function $v(x,y,z)$, explicit solutions – point source eikonals – are presented and the geometry of the rays is completely described.
@article{SM_2004_195_4_a1,
     author = {A. V. Borovskikh},
     title = {Group classification of the eikonal equation for},
     journal = {Sbornik. Mathematics},
     pages = {479--520},
     year = {2004},
     volume = {195},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/}
}
TY  - JOUR
AU  - A. V. Borovskikh
TI  - Group classification of the eikonal equation for
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 479
EP  - 520
VL  - 195
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/
LA  - en
ID  - SM_2004_195_4_a1
ER  - 
%0 Journal Article
%A A. V. Borovskikh
%T Group classification of the eikonal equation for
%J Sbornik. Mathematics
%D 2004
%P 479-520
%V 195
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/
%G en
%F SM_2004_195_4_a1
A. V. Borovskikh. Group classification of the eikonal equation for. Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 479-520. http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/

[1] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[2] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973 | Zbl

[3] Brekhovskikh L. M., Godin O. A., Akustika sloistykh sred, Nauka, M., 1989

[4] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[5] Sobolev S. L., “Volnovoe uravnenie dlya neodnorodnoi sredy”, Trudy Seismologicheskogo in-ta, 1930, no. 6, 1–57

[6] Kravtsov Yu. A., Orlov Yu. I., Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[7] Babich V. M., Buldyrev V. S., Molotkov I. A., Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo LGU, L., 1985 | MR | Zbl

[8] Arnold V. I., “Geometriya sfericheskikh krivykh i algebra kvaternionov”, UMN, 50:1 (1995), 3–68 | MR | Zbl

[9] Arnold V. I., “Topologicheskie problemy teorii rasprostraneniya voln”, UMN, 51:1 (1996), 3–50 | MR | Zbl

[10] Smirnov V. I., Kurs vysshei matematiki, IV, GTTL, M., 1953

[11] Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983

[12] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[13] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[14] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[15] Ibragimov N. Kh., Gruppy Li v nekotorykh voprosakh matematicheskoi fiziki, Iz-vo NGU, Novosibirsk, 1972 | MR

[16] Borovskikh A. V., Gruppovaya klassifikatsiya uravnenii eikonala dlya volnovogo uravneniya v neodnorodnoi srede, Dep. v VINITI 29.05.2002 No 953-V2002