Group classification of the eikonal equation for
Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 479-520

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $(\nabla\psi)^2=1/v^2(x,y,z)$, known as the eikonal equation, is studied. This is the characteristic equation for the wave equations in an inhomogeneous medium, which plays a central role in the description of the geometry of the rays and the wave fronts. A full geometric classification of the family of eikonal equations is carried out (an equation is determined by the function $v(x,y,z)$, which has the meaning of the propagation velocity of a perturbation in the medium). In the cases of equations with linear or quadratic velocity function $v(x,y,z)$, explicit solutions – point source eikonals – are presented and the geometry of the rays is completely described.
@article{SM_2004_195_4_a1,
     author = {A. V. Borovskikh},
     title = {Group classification of the eikonal equation for},
     journal = {Sbornik. Mathematics},
     pages = {479--520},
     publisher = {mathdoc},
     volume = {195},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/}
}
TY  - JOUR
AU  - A. V. Borovskikh
TI  - Group classification of the eikonal equation for
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 479
EP  - 520
VL  - 195
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/
LA  - en
ID  - SM_2004_195_4_a1
ER  - 
%0 Journal Article
%A A. V. Borovskikh
%T Group classification of the eikonal equation for
%J Sbornik. Mathematics
%D 2004
%P 479-520
%V 195
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/
%G en
%F SM_2004_195_4_a1
A. V. Borovskikh. Group classification of the eikonal equation for. Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 479-520. http://geodesic.mathdoc.fr/item/SM_2004_195_4_a1/