Fujita type theorems for quasilinear parabolic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 459-478
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This work deals with the Cauchy problem for a parabolic equation with a double non-linearity of the following type:
$$
u_t=\operatorname{div}(u^\alpha|Du|^{m-1}Du)+u^p,
$$
where
$0$.
Existence and non-existence results for global solutions of this problem
with initial conditions that slowly decay to zero are established.
			
            
            
            
          
        
      @article{SM_2004_195_4_a0,
     author = {N. V. Afanasieva and A. F. Tedeev},
     title = {Fujita type theorems for quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {459--478},
     publisher = {mathdoc},
     volume = {195},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_4_a0/}
}
                      
                      
                    N. V. Afanasieva; A. F. Tedeev. Fujita type theorems for quasilinear parabolic equations. Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 459-478. http://geodesic.mathdoc.fr/item/SM_2004_195_4_a0/
