Fujita type theorems for quasilinear parabolic equations
Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 459-478

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with the Cauchy problem for a parabolic equation with a double non-linearity of the following type: $$ u_t=\operatorname{div}(u^\alpha|Du|^{m-1}Du)+u^p, $$ where $0$. Existence and non-existence results for global solutions of this problem with initial conditions that slowly decay to zero are established.
@article{SM_2004_195_4_a0,
     author = {N. V. Afanasieva and A. F. Tedeev},
     title = {Fujita type theorems for quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {459--478},
     publisher = {mathdoc},
     volume = {195},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_4_a0/}
}
TY  - JOUR
AU  - N. V. Afanasieva
AU  - A. F. Tedeev
TI  - Fujita type theorems for quasilinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 459
EP  - 478
VL  - 195
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_4_a0/
LA  - en
ID  - SM_2004_195_4_a0
ER  - 
%0 Journal Article
%A N. V. Afanasieva
%A A. F. Tedeev
%T Fujita type theorems for quasilinear parabolic equations
%J Sbornik. Mathematics
%D 2004
%P 459-478
%V 195
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_4_a0/
%G en
%F SM_2004_195_4_a0
N. V. Afanasieva; A. F. Tedeev. Fujita type theorems for quasilinear parabolic equations. Sbornik. Mathematics, Tome 195 (2004) no. 4, pp. 459-478. http://geodesic.mathdoc.fr/item/SM_2004_195_4_a0/