On the asymptotics of energy transmitted by an
Sbornik. Mathematics, Tome 195 (2004) no. 3, pp. 303-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the energy transmitted by an almost periodic source of oscillations to an open resonator over a long time is proportional to the time of work of the source and at resonance is inversely proportional to the damping factor of oscillations in the open resonator.
@article{SM_2004_195_3_a0,
     author = {A. A. Arsen'ev},
     title = {On the asymptotics of energy transmitted by an},
     journal = {Sbornik. Mathematics},
     pages = {303--315},
     year = {2004},
     volume = {195},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_3_a0/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - On the asymptotics of energy transmitted by an
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 303
EP  - 315
VL  - 195
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_3_a0/
LA  - en
ID  - SM_2004_195_3_a0
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T On the asymptotics of energy transmitted by an
%J Sbornik. Mathematics
%D 2004
%P 303-315
%V 195
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2004_195_3_a0/
%G en
%F SM_2004_195_3_a0
A. A. Arsen'ev. On the asymptotics of energy transmitted by an. Sbornik. Mathematics, Tome 195 (2004) no. 3, pp. 303-315. http://geodesic.mathdoc.fr/item/SM_2004_195_3_a0/

[1] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[3] Howland J. S., “The Livsic matrix in perturbation theory”, J. Math. Anal. Appl., 50 (1975), 415–437 | DOI | MR | Zbl

[4] Shenk N., Thoe D., “Eigenfunction expansions and scattering theory for perturbations of $-\Delta$”, J. Math. Anal. Appl., 36 (1971), 313–351 | DOI | MR | Zbl

[5] Shenk N., Thoe D., “Resonant states and poles of the scattering matrix for perturbation of $-\Delta$”, J. Math. Anal. Appl., 37 (1972), 467–491 | DOI | MR | Zbl

[6] Arsenev A. A., “Ob asimptotike energii, izluchennoi pochti periodicheskim istochnikom kolebanii”, ZhVM i MF, 15:4 (1975), 1062–1066 | MR | Zbl

[7] Arsenev A. A., “Povedenie amplitudy rasseyaniya rezonatora Gelmgoltsa vblizi rezonansa”, Matem. sb., 192:9 (2001), 3–16 | MR | Zbl

[8] Agmon S., “A perturbation theory of resonances”, Comm. Pure Appl. Math., 51 (1998), 1255–1309 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] Costin O., Soffer A., “Resonance theory for Schrödinger operators”, Comm. Math. Phys., 224 (2001), 133–152 | DOI | MR | Zbl

[10] Merkli M., Sigal I. M., “A time-dependent theory of quantum resonances”, Comm. Math. Phys., 201 (1999), 549–576 | DOI | MR | Zbl

[11] Soffer A., Weinstein M. I., “Time dependent resonance theory”, Geom. Funct. Anal., 8 (1998), 1086–1128 | DOI | MR | Zbl

[12] Tang S.-H., Zworski M., “Resonance expansions of scattered waves”, Comm. Pure Appl. Math., 53 (2000), 1305–1334 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] Parravicini G., Gorini V., “Resonances, scattering theory, and rigged Hilbert spaces”, J. Math. Phys., 21:8 (1980), 2208–2226 | DOI | MR | Zbl

[14] Castagnino M., Betan R., Laura R., Liotta R. J., “Quantum decay processes and Gamov states”, J. Phys. A, 35 (2002), 6055–6074 | DOI | MR | Zbl

[15] Hislop P. D., Martinez A., “Scattering resonances of a Helmholz resonator”, Indiana Univ. Math. J., 40 (1991), 767–788 | DOI | MR | Zbl

[16] Fernandez C. A., “Resonances in scattering by a resonator”, Indiana Univ. Math. J., 34 (1985), 115–125 | DOI | MR | Zbl

[17] Arsenev A. A., “Rezonansnoe rasseyanie v kvantovykh volnovodakh”, Matem. sb., 194:1 (2003), 3–22 | MR | Zbl