Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain
Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 287-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour as $t\to\infty$ of solutions of a second-order semilinear parabolic equation in a cylindric domain satisfying the homogeneous Neumann boundary conditions at the lateral surface of the domain is described.
@article{SM_2004_195_2_a5,
     author = {I. V. Filimonova},
     title = {Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain},
     journal = {Sbornik. Mathematics},
     pages = {287--302},
     year = {2004},
     volume = {195},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/}
}
TY  - JOUR
AU  - I. V. Filimonova
TI  - Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 287
EP  - 302
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/
LA  - en
ID  - SM_2004_195_2_a5
ER  - 
%0 Journal Article
%A I. V. Filimonova
%T Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain
%J Sbornik. Mathematics
%D 2004
%P 287-302
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/
%G en
%F SM_2004_195_2_a5
I. V. Filimonova. Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain. Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 287-302. http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[2] Baras P., Veron L., “Comportement asymptotique de la solution d'une équation d'évolution semi-linéaire de la chaleur”, Comm. Partial Differential Equations, 4 (1979), 795–807 | DOI | MR | Zbl

[3] Kondratiev V. A., Veron L., “Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations”, Asymptot. Anal., 14:2 (1997), 117–156 | MR | Zbl

[4] Arefev V. N., Kondratev V. A., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi dlya nelineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 29:12 (1993), 2104–2116 | MR | Zbl

[5] Bagirov L. A., Kondratev V. A., “Ob asimptoticheskikh svoistvakh reshenii uravneniya diffuzii”, Trudy sem. im. I. G. Petrovskogo, 22, Izd-vo MGU, M., 2002, 37–70 | MR

[6] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[7] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Matem. sb., 84(126):4 (1971), 607–629 | MR | Zbl

[8] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl