Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain
Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 287-302

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behaviour as $t\to\infty$ of solutions of a second-order semilinear parabolic equation in a cylindric domain satisfying the homogeneous Neumann boundary conditions at the lateral surface of the domain is described.
@article{SM_2004_195_2_a5,
     author = {I. V. Filimonova},
     title = {Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain},
     journal = {Sbornik. Mathematics},
     pages = {287--302},
     publisher = {mathdoc},
     volume = {195},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/}
}
TY  - JOUR
AU  - I. V. Filimonova
TI  - Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 287
EP  - 302
VL  - 195
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/
LA  - en
ID  - SM_2004_195_2_a5
ER  - 
%0 Journal Article
%A I. V. Filimonova
%T Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain
%J Sbornik. Mathematics
%D 2004
%P 287-302
%V 195
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/
%G en
%F SM_2004_195_2_a5
I. V. Filimonova. Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain. Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 287-302. http://geodesic.mathdoc.fr/item/SM_2004_195_2_a5/