The Banach–Saks index
Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 263-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of the Banach–Saks index are studied in the class of rearrangement invariant spaces. The Banach–Saks indices of the spaces $L_{p,q}$ and some Orlicz spaces are calculated. Generalizations of the Banach–Saks theorems are obtained.
@article{SM_2004_195_2_a4,
     author = {E. M. Semenov and F. A. Sukochev},
     title = {The {Banach{\textendash}Saks} index},
     journal = {Sbornik. Mathematics},
     pages = {263--285},
     year = {2004},
     volume = {195},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_2_a4/}
}
TY  - JOUR
AU  - E. M. Semenov
AU  - F. A. Sukochev
TI  - The Banach–Saks index
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 263
EP  - 285
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_2_a4/
LA  - en
ID  - SM_2004_195_2_a4
ER  - 
%0 Journal Article
%A E. M. Semenov
%A F. A. Sukochev
%T The Banach–Saks index
%J Sbornik. Mathematics
%D 2004
%P 263-285
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2004_195_2_a4/
%G en
%F SM_2004_195_2_a4
E. M. Semenov; F. A. Sukochev. The Banach–Saks index. Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/SM_2004_195_2_a4/

[1] Banakh S., Teoriya lineinykh operatsii, Regulyar. i khaot. dinamika, Izhevsk, 2001

[2] Johnson W. B., “On quotiens of $L_p$ which one quotients of $l_p$”, Compositio Math., 34 (1977), 69–89 | MR | Zbl

[3] Beauzamy B., “Banach–Saks properties and spreading models”, Math. Scand., 44 (1979), 357–384 | MR | Zbl

[4] Rakov S. A., “O pokazatele Banakha–Saksa nekotorykh banakhovykh prostranstv posledovatelnostei”, Matem. zametki, 32:5 (1982), 613–625 | MR | Zbl

[5] Kadec M. I., Pelczynski A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_p$”, Studia Math., 21 (1962), 161–176 | MR | Zbl

[6] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer-Verlag, Berlin, 1977 | MR

[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[8] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[9] Gaposhkin V. F., “Lakunarnye ryady i nezavisimye funktsii”, UMN, 21:6 (1966), 3–82 | MR | Zbl

[10] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[11] Dodds P. G., Schlüchtermann G., Sukochev F. A., “Weak compactness in rearrangement invariant operator spaces”, Math. Proc. Cambridge Philos. Soc., 131 (2001), 363–384 | DOI | MR | Zbl

[12] Knaust H., Odell E., “Weakly null sequences with upper $l_p$-estimates”, Functional analysis, Proc. Semin. (Austin/TX, USA, 1987–89), eds. E. Odell, H. Rosenthal, Springer-Verlag, Berlin, 1991, 85–107 | MR

[13] Johnson W. B., Schechtman G., “Martingale inequalities in rearrangement invariant function spaces”, Israel J. Math., 64:3 (1988), 267–275 | DOI | MR

[14] Bessaga G., Pelczynski A., “On bases and unconditional convergence of series in Banach spaces”, Studia Math., 17 (1958), 151–164 | MR | Zbl

[15] Braverman M. Sh., Independent random variables and rearrangement invariant spaces, Cambridge Univ. Press., Cambridge, 1994 | MR

[16] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[17] Johnson W. B., Schechtman G., “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–806 | DOI | MR

[18] Rodin V. A., Semyonov E. M., “Rademacher series in symmetric spaces”, Anal. Math., 1:4 (1975), 207–222 | DOI | MR | Zbl

[19] Novikov S. Ya., “Kotip i tip funktsionalnykh prostranstv Lorentsa”, Matem. zametki, 32:2 (1982), 213–221 | MR | Zbl

[20] Creekmore J., “Type and cotype in Lorentz $L_{p,q}$ spaces”, Indag. Math. (N.S.), 43 (1981), 145–152 | MR | Zbl

[21] Carothers N. L., Dilworth S. J., “Geometry of Lorentz spaces via interpolation”, Functional analysis, Proc. 4th. Annu. Semin. (Austin/TX, USA, 1985–86), University of Texas, Austin, TX, 1986, 107–133 | MR

[22] Carothers N. L., Dilworth S. J., “Equidistributed random variable in $L_{p,q}$”, J. Funct. Anal., 84 (1989), 146–159 | DOI | MR | Zbl

[23] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[24] Lamperti D., Veroyatnost, Nauka, M., 1973 | Zbl

[25] Hernandez F. L., Rodriguez-Salinas B., “Lattice-embedding scales of $L^p$ spaces into Orlicz spaces”, Israel J. Math., 104 (1998), 191–220 | DOI | MR | Zbl