Approximability  of the classes $B_{p,\theta}^r$ of periodic functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 237-261
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Several questions of the approximability by linear methods
of the Besov classes $B_{1,\theta}^r$ and $B_{p,\theta}^r$ of periodic functions
of several variables, $1\leqslant p\infty$, are considered alongside their best approximations
in the spaces $L_1$ and $L_\infty$, respectively. Taken for approximation aggregates
are trigonometric polynomials with spectrum in the step hyperbolic cross.
Sharp (in order) estimates of the deviations of  step hyperbolic Fourier
sums on the classes $B_{p,\theta}^r$, 
$1\leqslant p\infty$, in the $L_\infty$ space are also obtained.
			
            
            
            
          
        
      @article{SM_2004_195_2_a3,
     author = {A. S. Romanyuk},
     title = {Approximability  of the classes $B_{p,\theta}^r$ of periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {237--261},
     publisher = {mathdoc},
     volume = {195},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/}
}
                      
                      
                    A. S. Romanyuk. Approximability  of the classes $B_{p,\theta}^r$ of periodic functions. Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 237-261. http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/
                  
                