Approximability of the classes $B_{p,\theta}^r$ of periodic functions
Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 237-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Several questions of the approximability by linear methods of the Besov classes $B_{1,\theta}^r$ and $B_{p,\theta}^r$ of periodic functions of several variables, $1\leqslant p\infty$, are considered alongside their best approximations in the spaces $L_1$ and $L_\infty$, respectively. Taken for approximation aggregates are trigonometric polynomials with spectrum in the step hyperbolic cross. Sharp (in order) estimates of the deviations of step hyperbolic Fourier sums on the classes $B_{p,\theta}^r$, $1\leqslant p\infty$, in the $L_\infty$ space are also obtained.
@article{SM_2004_195_2_a3,
     author = {A. S. Romanyuk},
     title = {Approximability  of the classes $B_{p,\theta}^r$ of periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {237--261},
     publisher = {mathdoc},
     volume = {195},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Approximability  of the classes $B_{p,\theta}^r$ of periodic functions
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 237
EP  - 261
VL  - 195
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/
LA  - en
ID  - SM_2004_195_2_a3
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Approximability  of the classes $B_{p,\theta}^r$ of periodic functions
%J Sbornik. Mathematics
%D 2004
%P 237-261
%V 195
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/
%G en
%F SM_2004_195_2_a3
A. S. Romanyuk. Approximability  of the classes $B_{p,\theta}^r$ of periodic functions. Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 237-261. http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/