Approximability of the classes $B_{p,\theta}^r$ of periodic functions
Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 237-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several questions of the approximability by linear methods of the Besov classes $B_{1,\theta}^r$ and $B_{p,\theta}^r$ of periodic functions of several variables, $1\leqslant p<\infty$, are considered alongside their best approximations in the spaces $L_1$ and $L_\infty$, respectively. Taken for approximation aggregates are trigonometric polynomials with spectrum in the step hyperbolic cross. Sharp (in order) estimates of the deviations of step hyperbolic Fourier sums on the classes $B_{p,\theta}^r$, $1\leqslant p<\infty$, in the $L_\infty$ space are also obtained.
@article{SM_2004_195_2_a3,
     author = {A. S. Romanyuk},
     title = {Approximability of the classes $B_{p,\theta}^r$ of periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {237--261},
     year = {2004},
     volume = {195},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Approximability of the classes $B_{p,\theta}^r$ of periodic functions
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 237
EP  - 261
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/
LA  - en
ID  - SM_2004_195_2_a3
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Approximability of the classes $B_{p,\theta}^r$ of periodic functions
%J Sbornik. Mathematics
%D 2004
%P 237-261
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/
%G en
%F SM_2004_195_2_a3
A. S. Romanyuk. Approximability of the classes $B_{p,\theta}^r$ of periodic functions. Sbornik. Mathematics, Tome 195 (2004) no. 2, pp. 237-261. http://geodesic.mathdoc.fr/item/SM_2004_195_2_a3/

[1] Besov O. V., “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, Dokl. AN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[3] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Trudy MIAN, 187, 1989, 143–161 | MR

[4] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Trudy MIAN, 178, 1986, 1–112 | MR | Zbl

[5] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Trudy MIAN, 38, 1951, 244–278 | MR | Zbl

[6] Jakson D., “Certain problem of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI

[7] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi raznostyu trigonometricheskimi polinomami i poperechniki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 171–186 | MR | Zbl

[8] Temlyakov V. N., “Priblizhenie periodicheskikh funktsii neskolkikh peremennykh trigonometricheskimi polinomami i poperechniki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 986–1030 | MR

[9] Dahmen W., Görlich E., “A conjecture of M. Golomb on optimal and nearly-optimal approximation”, Bull. Amer. Math. Soc., 80:6 (1974), 1199–1202 | DOI | MR | Zbl

[10] Temlyakov V. N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Trudy MIAN, 189, 1989, 138–168 | MR | Zbl

[11] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[12] Telyakovskii S. A., “Ob otsenkakh proizvodnykh trigonometricheskikh polinomov mnogikh peremennykh”, Sib. matem. zhurn., 4:6 (1963), 1404–1411

[13] Liflyand I. R., “Tochnyi poryadok konstant Lebega giperbolicheskikh chastnykh summ kratnykh ryadov Fure”, Matem. zametki, 39:5 (1986), 674–683 | MR | Zbl

[14] Romanyuk A. S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_q$”, Ukr. matem. zhurn., 43:10 (1991), 1398–1408 | MR | Zbl

[15] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Litt. Sci. Szeged., 8 (1937), 127–130 | Zbl