Global attractor of a contact parabolic problem in a thin
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 97-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A semilinear parabolic equation is considered in the union of two bounded thin cylindrical domains $\Omega_{1,\varepsilon}=\Gamma\times(0,\varepsilon)$ and $\Omega_{2,\varepsilon}=\Gamma\times(-\varepsilon,0)$ adjoining along their bases, where $\Gamma$ is a domain in $\mathbb R^d$, $d\leqslant3$. The unknown functions are related by means of an interface condition on the common base $\Gamma$. This problem can serve as a reaction-diffusion model describing the behaviour of a system of two components interacting at the boundary. The intensity of the reaction is assumed to depend on $\varepsilon$ and the thickness of the domains, and to be of order $\varepsilon^\alpha$. Under investigation are the limiting properties of the evolution semigroup $S_{\alpha,\varepsilon}(t)$, generated by the original problem as $\varepsilon\to0$ (that is, as the domain becomes ever thinner). These properties are shown to depend essentially on the exponent $\alpha$. Depending on whether $\alpha$ is equal to, greater than, or smaller than 1, the original system can have three distinct systems of equations on $\Gamma$ as its asymptotic limit. The continuity properties of the global attractor of the semigroup $S_{\alpha,\varepsilon}(t)$ as $\varepsilon\to0$ are established under natural assumptions.
@article{SM_2004_195_1_a5,
     author = {A. M. Rekalo and I. D. Chueshov},
     title = {Global attractor of a contact parabolic problem in a thin},
     journal = {Sbornik. Mathematics},
     pages = {97--119},
     year = {2004},
     volume = {195},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/}
}
TY  - JOUR
AU  - A. M. Rekalo
AU  - I. D. Chueshov
TI  - Global attractor of a contact parabolic problem in a thin
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 97
EP  - 119
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/
LA  - en
ID  - SM_2004_195_1_a5
ER  - 
%0 Journal Article
%A A. M. Rekalo
%A I. D. Chueshov
%T Global attractor of a contact parabolic problem in a thin
%J Sbornik. Mathematics
%D 2004
%P 97-119
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/
%G en
%F SM_2004_195_1_a5
A. M. Rekalo; I. D. Chueshov. Global attractor of a contact parabolic problem in a thin. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 97-119. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/

[1] Hale J., Raugel G., “Reaction-diffusion equation on thin domains”, J. Math. Pures Appl. (9), 71 (1992), 33–95 | MR | Zbl

[2] Hale J., Raugel G., “A reaction-diffusion equation on a thin L-shaped domain”, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283–327 | MR | Zbl

[3] Ciuperca I. S., “Reaction-diffusion equations on thin domains with varying order of thinness”, J. Differential Equations, 126 (1996), 244–291 | DOI | MR | Zbl

[4] Prizzi M., Rybakowski K. P., “Some recent results on thin domain problem”, Topol. Methods Nonlinear Anal., 14 (1999), 239–255 | MR | Zbl

[5] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[6] Hale J., Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[7] Kapitanskii L. V, Kostin I. N., “Attraktory nelineinykh evolyutsionnykh uravnenii i ikh approksimatsii”, Algebra i analiz, 2:1 (1990), 114–140 | MR

[8] Kostin I. N., “Regulyarnyi podkhod v zadache ob attraktorakh singulyarno vozmuschennykh uravnenii”, Zapiski nauchn. sem. LOMI, 181, 1990, 93–131 | MR | Zbl

[9] Boutet de Monvel L., Chueshov I. D., Khruslov E. Ya., “Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure”, Ann. Mat. Pura Appl. (4), 162 (1997), 297–322 | DOI | MR

[10] Pankratov L. S., Chueshov I. D., “Usrednenie attraktorov nelineinykh giperbolicheskikh uravnenii s asimptoticheski vyrozhdayuschimisya koeffitsientami”, Matem. sb., 190:9 (1999), 99–126 | MR | Zbl

[11] Bourgeat A., Chueshov I. D., Pankratov L. S., “Homogenization of attractors of semilinear parabolic equations in domains with spherical traps”, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 581–587 | MR

[12] Vishik M. I., Chepyzhov V. V., “Usrednenie traektornykh attraktorov evolyutsionnykh uravnenii s bystro ostsilliruyuschimi chlenami”, Matem. sb., 192:1 (2001), 13–50 | MR | Zbl

[13] Chueshov I. D., Vvedenie v teoriyu beskonechnomernykh dissipativnykh sistem, Akta, Kharkov, 1999 ; http://www.emis.de/monographs/Chueshov/ | MR | Zbl

[14] Rekalo A., “Asymptotic behaviour of solutions of nonlinear parabolic equations on two-layer thin domains”, Nonlinear Anal., 52 (2003), 1393–1410 | DOI | MR | Zbl

[15] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[17] Iosifyan G. A., Oleinik O. A., Shamaev A. S., “O predelnom povedenii spektra posledovatelnosti operatorov, zadannykh v razlichnykh gilbertovykh prostranstvakh”, UMN, 44:3 (1989), 157–158 | MR | Zbl