Global attractor of a contact parabolic problem in a thin
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 97-119

Voir la notice de l'article provenant de la source Math-Net.Ru

A semilinear parabolic equation is considered in the union of two bounded thin cylindrical domains $\Omega_{1,\varepsilon}=\Gamma\times(0,\varepsilon)$ and $\Omega_{2,\varepsilon}=\Gamma\times(-\varepsilon,0)$ adjoining along their bases, where $\Gamma$ is a domain in $\mathbb R^d$, $d\leqslant3$. The unknown functions are related by means of an interface condition on the common base $\Gamma$. This problem can serve as a reaction-diffusion model describing the behaviour of a system of two components interacting at the boundary. The intensity of the reaction is assumed to depend on $\varepsilon$ and the thickness of the domains, and to be of order $\varepsilon^\alpha$. Under investigation are the limiting properties of the evolution semigroup $S_{\alpha,\varepsilon}(t)$, generated by the original problem as $\varepsilon\to0$ (that is, as the domain becomes ever thinner). These properties are shown to depend essentially on the exponent $\alpha$. Depending on whether $\alpha$ is equal to, greater than, or smaller than 1, the original system can have three distinct systems of equations on $\Gamma$ as its asymptotic limit. The continuity properties of the global attractor of the semigroup $S_{\alpha,\varepsilon}(t)$ as $\varepsilon\to0$ are established under natural assumptions.
@article{SM_2004_195_1_a5,
     author = {A. M. Rekalo and I. D. Chueshov},
     title = {Global attractor of a contact parabolic problem in a thin},
     journal = {Sbornik. Mathematics},
     pages = {97--119},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/}
}
TY  - JOUR
AU  - A. M. Rekalo
AU  - I. D. Chueshov
TI  - Global attractor of a contact parabolic problem in a thin
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 97
EP  - 119
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/
LA  - en
ID  - SM_2004_195_1_a5
ER  - 
%0 Journal Article
%A A. M. Rekalo
%A I. D. Chueshov
%T Global attractor of a contact parabolic problem in a thin
%J Sbornik. Mathematics
%D 2004
%P 97-119
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/
%G en
%F SM_2004_195_1_a5
A. M. Rekalo; I. D. Chueshov. Global attractor of a contact parabolic problem in a thin. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 97-119. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a5/