New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 85-96
Voir la notice de l'article provenant de la source Math-Net.Ru
A new method is proposed for constructing Hamilton-minimal and minimal Lagrangian immersions and embeddings of manifolds in $\mathbb C^n$ and in $\mathbb C\mathrm P^n$. In particular, using this method it is possible to construct embeddings of manifolds such as the $(2n+1)$-dimensional generalized Klein bottle $\mathscr K^{2n+1}$,
$S^{2n+1}\times S^1$, $\mathscr K^{2n+1}\times S^1$,
$S^{2n+1}\times S^1\times S^1$, and others.
@article{SM_2004_195_1_a4,
author = {A. E. Mironov},
title = {New examples of {Hamilton-minimal} and minimal {Lagrangian} manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$},
journal = {Sbornik. Mathematics},
pages = {85--96},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/}
}
TY - JOUR AU - A. E. Mironov TI - New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$ JO - Sbornik. Mathematics PY - 2004 SP - 85 EP - 96 VL - 195 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/ LA - en ID - SM_2004_195_1_a4 ER -
A. E. Mironov. New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/