New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 85-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method is proposed for constructing Hamilton-minimal and minimal Lagrangian immersions and embeddings of manifolds in $\mathbb C^n$ and in $\mathbb C\mathrm P^n$. In particular, using this method it is possible to construct embeddings of manifolds such as the $(2n+1)$-dimensional generalized Klein bottle $\mathscr K^{2n+1}$, $S^{2n+1}\times S^1$, $\mathscr K^{2n+1}\times S^1$, $S^{2n+1}\times S^1\times S^1$, and others.
@article{SM_2004_195_1_a4,
     author = {A. E. Mironov},
     title = {New examples of {Hamilton-minimal} and minimal {Lagrangian} manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$},
     journal = {Sbornik. Mathematics},
     pages = {85--96},
     year = {2004},
     volume = {195},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/}
}
TY  - JOUR
AU  - A. E. Mironov
TI  - New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 85
EP  - 96
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/
LA  - en
ID  - SM_2004_195_1_a4
ER  - 
%0 Journal Article
%A A. E. Mironov
%T New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$
%J Sbornik. Mathematics
%D 2004
%P 85-96
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/
%G en
%F SM_2004_195_1_a4
A. E. Mironov. New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/

[1] Oh Y., “Volume minimization of Lagrangian submanifolds under Hamiltonian deformations”, Math. Z., 212 (1993), 175–192 | DOI | MR | Zbl

[2] Castro I., Urbano F., “Examples of unstable Hamiltonian-minimal Lagrangian tori in $\mathbb C^2$”, Compositio Math., 111 (1998), 1–14 | DOI | MR | Zbl

[3] Helein F., Romon P., “Hamiltonian stationary Lagrangian surfaces in $\mathbb C^2$”, Comm. Anal. Geom., 10 (2002), 79–126 | MR | Zbl

[4] Helein F., Romon P., “Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions”, Comment. Math. Helv., 75 (2000), 680–688 | DOI | MR

[5] Nemirovskii S. Yu., “Puchki Lefshetsa, funktsii Morsa i lagranzhevy vlozheniya butylki Kleina”, Izv. RAN. Ser. matem., 66:1 (2002), 153–166 | MR | Zbl

[6] Helein F., Romon P., “Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces”, Differential geometry and integrable systems, Contemp. Mathematics, 308, eds. M. Guest, R. Miyaoka, Y. Ohnita, Amer. Math. Soc., Providence, RI, 2002, 161–178 | MR | Zbl

[7] Castro I., Urbano F., “New examples of minimal Lagrangian tori in the complex projective plane”, Manuscripta Math., 85 (1994), 265–281 | DOI | MR | Zbl

[8] Wolfson J., “Minimal Lagrangian diffeomorphisms and the Monge–Ampere equation”, J. Differential Geom., 46 (1997), 335–373 | MR | Zbl