New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 85-96

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method is proposed for constructing Hamilton-minimal and minimal Lagrangian immersions and embeddings of manifolds in $\mathbb C^n$ and in $\mathbb C\mathrm P^n$. In particular, using this method it is possible to construct embeddings of manifolds such as the $(2n+1)$-dimensional generalized Klein bottle $\mathscr K^{2n+1}$, $S^{2n+1}\times S^1$, $\mathscr K^{2n+1}\times S^1$, $S^{2n+1}\times S^1\times S^1$, and others.
@article{SM_2004_195_1_a4,
     author = {A. E. Mironov},
     title = {New examples of {Hamilton-minimal} and minimal {Lagrangian} manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$},
     journal = {Sbornik. Mathematics},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/}
}
TY  - JOUR
AU  - A. E. Mironov
TI  - New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 85
EP  - 96
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/
LA  - en
ID  - SM_2004_195_1_a4
ER  - 
%0 Journal Article
%A A. E. Mironov
%T New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$
%J Sbornik. Mathematics
%D 2004
%P 85-96
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/
%G en
%F SM_2004_195_1_a4
A. E. Mironov. New examples of Hamilton-minimal and minimal Lagrangian manifolds in~$\mathbb C^n$ and~$\mathbb C\mathrm P^n$. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a4/