@article{SM_2004_195_1_a3,
author = {V. M. Miklyukov},
title = {Isothermic coordinates on singular surfaces},
journal = {Sbornik. Mathematics},
pages = {65--83},
year = {2004},
volume = {195},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a3/}
}
V. M. Miklyukov. Isothermic coordinates on singular surfaces. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 65-83. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a3/
[1] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl
[2] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR
[3] Gehring F. W., Lehto O., “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. Math. Ser. A I, 272 (1959), 1–9 | MR
[4] Saks S., Teoriya integrala, IL, M., 1949
[5] Hajlasz P., “Sobolev mappings, co-area formula and related topics”, Trudy po analizu i geometrii, Izd-vo Inst. matem., Novosibirsk, 2000, 227–254 | MR | Zbl
[6] Karateodori K., Konformnoe otobrazhenie. Sovremennaya matematika. Kniga pyataya, ONTI, Gostekhteorizdat, M.–L., 1934
[7] Reshetnyak Yu. G., “Dvumernye mnogoobraziya ogranichennoi krivizny”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 70, VINITI, M., 1989, 8–189 | MR
[8] Toro T., “Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds”, J. Differential Geom., 39 (1994), 65–101 | MR | Zbl
[9] Müller S., Sverák V., “On surfaces of finite total curvature”, J. Differential Geom., 42 (1995), 229–258 | MR | Zbl
[10] Grudskii I. M., “Postroenie vnutrennikh koordinat na sostavnykh rimanovykh poverkhnostyakh”, Differentsialnye, integralnye uravneniya i kompleksnyi analiz, Izd-vo Kalmytskogo un-ta, Elista, 1986, 30–45 | MR
[11] Grudskii I. M., “Formula Kristoffelya–Shvartsa dlya poliedralnykh poverkhnostei”, Dokl. AN SSSR, 307:1 (1989), 15–17 | MR
[12] Trokhimchuk Yu. Yu., Nepreryvnye otobrazheniya i usloviya monogennosti, GIFML, M., 1963
[13] Dolzhenko E. P., “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl
[14] Khavinson S. Ya., “O stiranii osobennostei”, Litovskii matem. sb., III:1 (1963), 271–287
[15] David G., Mattila P., “Removable sets for Lipschitz harmonic functions in the plane”, Revista Mat. Iberoamericana, 16:1 (2000), 137–215 | MR | Zbl
[16] Vekua I. N., Obobschennye analiticheskie funktsii, GIFML, M., 1959 | MR
[17] Morrey C. B., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–186 | DOI | MR
[18] Bers L., “Uniformization by Beltrami equation”, Comm. Pure Appl. Math., 14 (1961), 215–228 | DOI | MR | Zbl
[19] Martio O., Miklyukov V., On existence and uniqueness of degenerate Beltrami equation, Reports of the Department of Mathematics, University of Helsinki, Preprint No 347, Univ. Helsinki, Helsinki, 2003 | MR
[20] Miklyukov V. M., Suvorov G. D., “O suschestvovanii i edinstvennosti kvazikonformnykh otobrazhenii s neogranichennymi kharakteristikami”, Issledovaniya po sovremennoi teorii funktsii i ee primeneniyam, Naukova Dumka, Kiev, 1972, 45–53
[21] Suvorov G. D., Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova Dumka, Kiev, 1985 | MR
[22] Maly J., “Sufficient conditions for change of variables in integral”, Trudy po analizu i geometrii, Izd-vo Inst. matem., Novosibirsk, 2000, 370–386 | MR | Zbl
[23] Heinonen J., Koskela P., “Sobolev mappings with integrable dilatations”, Arch. Ration. Mech. Anal., 125 (1993), 81–97 | DOI | MR | Zbl
[24] Kruglikov V. I., “O suschestvovanii i edinstvennosti otobrazhenii, kvazikonformnykh v srednem”, Metricheskie voprosy teorii funktsii i otobrazhenii, vyp. IV, Naukova Dumka, Kiev, 1973, 123–147 | MR
[25] Gutlyanskii V., Martio O., Sugawa T., Vuorinen M., On the degenerate Beltrami equation, Reports of the Department of Mathematics, University of Helsinki, Preprint No 282, Univ. Helsinki, Helsinki, 2001 | MR
[26] Koskela P., Malý J., Mappings of finite distortion: The zero set of the Jacobian, Preprint No 241, Univ. Jyvaskyla, Jyvaskyla, 2001 | MR
[27] Iwaniec T., Martin G., Geometric function theory and nonlinear analysis, Oxford Univ. Press, Oxford, 2001 | Zbl
[28] Adams A. R., Hedberg L. I., Function spaces and potential theory, Springer-Verlag, Berlin, 1994