Schottky-type groups and minimal sets of horocycle and geodesic flows
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 35-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of the paper the following conjecture stated by Dal'bo and Starkov is proved: the geodesic flow on a surface $M=\mathbb H^2/\Gamma$ of constant negative curvature has a non-compact non-trivial minimal set if and only if the Fuchsian group $\Gamma$ is infinitely generated or contains a parabolic element. In the second part interesting examples of horocycle flows are constructed: 1) a flow whose restriction to the non-wandering set has no minimal subsets, and 2) a flow without minimal sets. In addition, an example of an infinitely generated discrete subgroup of $\operatorname{SL}(2,\mathbb R)$ with all orbits discrete and dense in $\mathbb R^2$ is constructed.
@article{SM_2004_195_1_a2,
     author = {M. S. Kulikov},
     title = {Schottky-type groups and minimal sets of horocycle and geodesic flows},
     journal = {Sbornik. Mathematics},
     pages = {35--64},
     year = {2004},
     volume = {195},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/}
}
TY  - JOUR
AU  - M. S. Kulikov
TI  - Schottky-type groups and minimal sets of horocycle and geodesic flows
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 35
EP  - 64
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/
LA  - en
ID  - SM_2004_195_1_a2
ER  - 
%0 Journal Article
%A M. S. Kulikov
%T Schottky-type groups and minimal sets of horocycle and geodesic flows
%J Sbornik. Mathematics
%D 2004
%P 35-64
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/
%G en
%F SM_2004_195_1_a2
M. S. Kulikov. Schottky-type groups and minimal sets of horocycle and geodesic flows. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 35-64. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/

[1] Dal'bo F., Starkov A. N., “On noncompact minimal sets of the geodesic flow”, J. Dynam. Control Systems, 8:1 (2002), 47–64 | DOI | MR | Zbl

[2] Purzitsky N., “A cutting and pasting of noncompact polygons with applications to fuchsian groups”, Acta Math., 143:3–4 (1979), 233–250 | DOI | MR | Zbl

[3] Dal'bo F., Starkov A. N., “On classification of limit points of infinitely generated Schottky groups”, J. Dynam. Control Systems, 6:4 (2000), 561–578 | DOI | MR | Zbl

[4] Nicholls P. J., Waterman P. L., “Limit points via Schottky pairings”, Discrete groups and geometry (Birmingham, 1991), London Math. Soc. Lecture Note Ser., 173, Cambridge Univ. Press, Cambridge, 1992, 190–195 | MR

[5] Beniere J.-C., Meigniez G., “Flows without minimal set”, Ergodic Theory Dynam. Systems, 19:1 (1999), 21–30 | DOI | MR | Zbl

[6] Inaba T., “An example of a flow on a non-compact surface without minimal set”, Ergodic Theory Dynam. Systems, 19:1 (1999), 31–33 | DOI | MR | Zbl

[7] Starkov A. N., “Fuchsian groups from the dynamical viewpoint”, J. Dynam. Control Systems, 1:3 (1995), 427–445 | DOI | MR | Zbl

[8] Hedlund G. A., “Fuchsian groups and transitive horocycles”, Duke Math. J., 2 (1936), 530–542 | DOI | MR | Zbl

[9] Apanasov B. N., Geometriya diskretnykh grupp i mnogoobrazii, Nauka, M., 1991 | MR

[10] Beardon A. F., The geometry of discrete groups, Springer-Verlag, New York, 1983 | MR | Zbl

[11] Dal'bo F., Starkov A. N., “Correction to: “On noncompact minimal sets of the geodesic flow””, J. Dynam. Control Systems (to appear)

[12] Dal'bo F., Starkov A. N., “Correction to: “On a classification of limit points of infinitely generated Schottky groups””, J. Dynam. Control Systems (to appear)