Schottky-type groups and minimal sets of horocycle and geodesic flows
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 35-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the paper the following conjecture stated by Dal'bo and Starkov is proved: the geodesic flow on a surface $M=\mathbb H^2/\Gamma$ of constant negative curvature has a non-compact non-trivial minimal set if and only if the Fuchsian group $\Gamma$ is infinitely generated or contains a parabolic element. In the second part interesting examples of horocycle flows are constructed: 1) a flow whose restriction to the non-wandering set has no minimal subsets, and 2) a flow without minimal sets. In addition, an example of an infinitely generated discrete subgroup of $\operatorname{SL}(2,\mathbb R)$ with all orbits discrete and dense in $\mathbb R^2$ is constructed.
@article{SM_2004_195_1_a2,
     author = {M. S. Kulikov},
     title = {Schottky-type groups and minimal sets of horocycle and geodesic flows},
     journal = {Sbornik. Mathematics},
     pages = {35--64},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/}
}
TY  - JOUR
AU  - M. S. Kulikov
TI  - Schottky-type groups and minimal sets of horocycle and geodesic flows
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 35
EP  - 64
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/
LA  - en
ID  - SM_2004_195_1_a2
ER  - 
%0 Journal Article
%A M. S. Kulikov
%T Schottky-type groups and minimal sets of horocycle and geodesic flows
%J Sbornik. Mathematics
%D 2004
%P 35-64
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/
%G en
%F SM_2004_195_1_a2
M. S. Kulikov. Schottky-type groups and minimal sets of horocycle and geodesic flows. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 35-64. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a2/