Averaging of parabolic inclusions
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 19-34

Voir la notice de l'article provenant de la source Math-Net.Ru

A version of Bogolyubov's first theorem is established for infinite-dimensional parabolic inclusions. Sufficient conditions for the asymptotic stability of the trivial solution of a parabolic inclusion with non-stationary homogeneous principal part are stated.
@article{SM_2004_195_1_a1,
     author = {V. S. Klimov},
     title = {Averaging of parabolic inclusions},
     journal = {Sbornik. Mathematics},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a1/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Averaging of parabolic inclusions
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 19
EP  - 34
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_1_a1/
LA  - en
ID  - SM_2004_195_1_a1
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Averaging of parabolic inclusions
%J Sbornik. Mathematics
%D 2004
%P 19-34
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_1_a1/
%G en
%F SM_2004_195_1_a1
V. S. Klimov. Averaging of parabolic inclusions. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 19-34. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a1/