Averaging of parabolic inclusions
Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 19-34
Voir la notice de l'article provenant de la source Math-Net.Ru
A version of Bogolyubov's first theorem is established for
infinite-dimensional parabolic inclusions. Sufficient conditions
for the asymptotic stability of the trivial solution of a parabolic
inclusion with non-stationary homogeneous principal part are
stated.
@article{SM_2004_195_1_a1,
author = {V. S. Klimov},
title = {Averaging of parabolic inclusions},
journal = {Sbornik. Mathematics},
pages = {19--34},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_1_a1/}
}
V. S. Klimov. Averaging of parabolic inclusions. Sbornik. Mathematics, Tome 195 (2004) no. 1, pp. 19-34. http://geodesic.mathdoc.fr/item/SM_2004_195_1_a1/