Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1795-1808

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the inclusion in a flow is considered for a measure-preserving transformation. It is shown that if a transformation $T$ has a simple spectrum, then the set of flows including $T$ – provided that it is not empty – consists either of a unique element or of infinitely many spectrally non-equivalent flows. It is proved that, generically, inclusions in a flow are maximally non-unique in the following sense: the centralizer of a generic transformation contains a subgroup isomorphic to an infinite-dimensional torus. The corresponding proof is based on the so-called dynamical alternative, a topological analogue of Fubini's theorem, a fundamental fact from descriptive set theory about the almost openness of analytic sets, and Dougherty's lemma describing conditions ensuring that the image of a separable metric space is a second-category set.
@article{SM_2004_195_12_a5,
     author = {A. M. Stepin and A. M. Eremenko},
     title = {Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation},
     journal = {Sbornik. Mathematics},
     pages = {1795--1808},
     publisher = {mathdoc},
     volume = {195},
     number = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/}
}
TY  - JOUR
AU  - A. M. Stepin
AU  - A. M. Eremenko
TI  - Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1795
EP  - 1808
VL  - 195
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/
LA  - en
ID  - SM_2004_195_12_a5
ER  - 
%0 Journal Article
%A A. M. Stepin
%A A. M. Eremenko
%T Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation
%J Sbornik. Mathematics
%D 2004
%P 1795-1808
%V 195
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/
%G en
%F SM_2004_195_12_a5
A. M. Stepin; A. M. Eremenko. Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1795-1808. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/