Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1795-1808
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the inclusion in a flow is considered for a measure-preserving transformation. It is shown that if a transformation $T$ has a simple spectrum, then the set of flows including $T$ – provided that it is not empty – consists either of a unique element or of infinitely many spectrally non-equivalent flows.
It is proved that, generically, inclusions in a flow are maximally non-unique in the following sense: the centralizer of a generic transformation contains a subgroup isomorphic to an infinite-dimensional torus. The corresponding proof is based on the so-called dynamical alternative, a topological analogue of Fubini's theorem, a fundamental fact from descriptive set
theory about the almost openness of analytic sets, and Dougherty's lemma describing conditions ensuring that the image of a separable metric space is a second-category set.
@article{SM_2004_195_12_a5,
author = {A. M. Stepin and A. M. Eremenko},
title = {Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation},
journal = {Sbornik. Mathematics},
pages = {1795--1808},
publisher = {mathdoc},
volume = {195},
number = {12},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/}
}
TY - JOUR AU - A. M. Stepin AU - A. M. Eremenko TI - Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation JO - Sbornik. Mathematics PY - 2004 SP - 1795 EP - 1808 VL - 195 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/ LA - en ID - SM_2004_195_12_a5 ER -
%0 Journal Article %A A. M. Stepin %A A. M. Eremenko %T Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation %J Sbornik. Mathematics %D 2004 %P 1795-1808 %V 195 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/ %G en %F SM_2004_195_12_a5
A. M. Stepin; A. M. Eremenko. Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1795-1808. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/