Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1795-1808 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the inclusion in a flow is considered for a measure-preserving transformation. It is shown that if a transformation $T$ has a simple spectrum, then the set of flows including $T$ – provided that it is not empty – consists either of a unique element or of infinitely many spectrally non-equivalent flows. It is proved that, generically, inclusions in a flow are maximally non-unique in the following sense: the centralizer of a generic transformation contains a subgroup isomorphic to an infinite-dimensional torus. The corresponding proof is based on the so-called dynamical alternative, a topological analogue of Fubini's theorem, a fundamental fact from descriptive set theory about the almost openness of analytic sets, and Dougherty's lemma describing conditions ensuring that the image of a separable metric space is a second-category set.
@article{SM_2004_195_12_a5,
     author = {A. M. Stepin and A. M. Eremenko},
     title = {Non-unique inclusion in a~flow and vast centralizer of a~generic measure-preserving transformation},
     journal = {Sbornik. Mathematics},
     pages = {1795--1808},
     year = {2004},
     volume = {195},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/}
}
TY  - JOUR
AU  - A. M. Stepin
AU  - A. M. Eremenko
TI  - Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1795
EP  - 1808
VL  - 195
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/
LA  - en
ID  - SM_2004_195_12_a5
ER  - 
%0 Journal Article
%A A. M. Stepin
%A A. M. Eremenko
%T Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation
%J Sbornik. Mathematics
%D 2004
%P 1795-1808
%V 195
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/
%G en
%F SM_2004_195_12_a5
A. M. Stepin; A. M. Eremenko. Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1795-1808. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a5/

[1] Khalmosh P. R., Lektsii po ergodicheskoi teorii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001

[2] Stepin A. M., “O kornyakh kvadratnykh iz metricheskikh avtomorfizmov”, Dokl. AN SSSR, 176:5 (1967), 1023–1026 | MR | Zbl

[3] Chacon R. V., “Transformations having continuous spectrum”, J. Math. Mech., 16:5 (1966), 399–415 | MR | Zbl

[4] Ornstein D. S., “On the root problem in ergodic theory”, Proceedings of the Sixth Berkeley symposium on mathematical statistics and probability (Univ. California, Berkeley, Calif., 1970/1971), 2, Univ. California Press, Berkeley, CA, 1972, 347–356 | MR | Zbl

[5] Stepin A. M., Primenenie metoda periodicheskikh approksimatsii v spektralnoi teorii dinamicheskikh sistem, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1968

[6] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR

[7] King J. F., “The generic transformation has roots of all orders”, Colloq. Math., 84/85 (2000), 521–547 | MR | Zbl

[8] Glasner E., King J. F., “A zero-one law for dynamical properties”, Contemp. Math., 215 (1998), 231–242 | MR | Zbl

[9] Okstobi Dzh., Mera i kategoriya, Mir, M., 1974

[10] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl

[11] de la Rue T., de Sam Lazaro J., “Une transformation générique peut être insérée dans un flot”, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 121–134 | DOI | MR | Zbl

[12] Stepin A. M., “O kogomologiyakh grupp avtomorfizmov prostranstva Lebega”, Funkts. analiz i ego prilozh., 5:2 (1971), 91–92 | MR | Zbl

[13] Lemanczyk M., “Extensions of cocycles for hyperfinite actions and applications”, Monatsh. Math., 123:4 (1997), 209–228 | MR | Zbl

[14] Tikhonov S. V., “Tipichnoe deistvie gruppy $\mathbb Z^d$ vkladyvaetsya v deistvie gruppy $\mathbb R^d$”, Dokl. RAN, 391:1 (2003), 26–28 | MR | Zbl

[15] Ageev O. N., “Tipichnyi avtomorfizm prostranstva Lebega sopryazhen s $G$-rasshireniem dlya lyuboi konechnoi abelevoi gruppy $G$”, Dokl. RAN, 374:4 (2000), 439–442 | MR | Zbl

[16] Ageev O. N., “O tipichnosti nekotorykh neasimptoticheskikh dinamicheskikh svoistv”, UMN, 58:1 (2003), 177–178 | MR | Zbl

[17] Stepin A. M., Eremenko A. M., “Tipichnoe sokhranyayuschee meru preobrazovanie imeet obshirnyi tsentralizator”, Dokl. RAN, 394:6 (2004), 739–742 | MR | Zbl