Existence of boundary values for biharmonic functions
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1781-1793

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for the existence of an $L_2$-limit and a weak $L_2$-limit of a biharmonic function at the regular analytic boundary of a bounded two-dimensional domain are established.
@article{SM_2004_195_12_a4,
     author = {V. P. Mikhailov},
     title = {Existence of boundary values for biharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {1781--1793},
     publisher = {mathdoc},
     volume = {195},
     number = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a4/}
}
TY  - JOUR
AU  - V. P. Mikhailov
TI  - Existence of boundary values for biharmonic functions
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1781
EP  - 1793
VL  - 195
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a4/
LA  - en
ID  - SM_2004_195_12_a4
ER  - 
%0 Journal Article
%A V. P. Mikhailov
%T Existence of boundary values for biharmonic functions
%J Sbornik. Mathematics
%D 2004
%P 1781-1793
%V 195
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a4/
%G en
%F SM_2004_195_12_a4
V. P. Mikhailov. Existence of boundary values for biharmonic functions. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1781-1793. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a4/