On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1757-1779 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Lefschetz formula expresses the number of fixed points of a continuous map $f\colon M\to M$ in terms of the transformation induced by $f$ on the cohomology of $M$. In 1966, Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they obtained a holomorphic Lefschetz formula on compact complex manifolds without boundary. Brenner and Shubin (1981, 1991) extended the Atiyah–Bott theory to compact manifolds with boundary. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, therefore the Atiyah–Bott theory is not applicable. Bypassing difficulties related to the boundary behaviour of Dolbeault cohomology, Donnelly and Fefferman (1986) obtained a formula for the number of fixed points in terms of the Bergman metric. The aim of this paper is to obtain a Lefschetz formula on relatively compact strictly pseudoconvex subdomains of complex manifolds $X$ with smooth boundary, that is, to find the total Lefschetz number for a holomorphic endomorphism $f^*$ of the Dolbeault complex and to express it in terms of local invariants of the fixed points of $f$.
@article{SM_2004_195_12_a3,
     author = {A. M. Kytmanov and S. G. Myslivets and N. N. Tarkhanov},
     title = {On a holomorphic {Lefschetz} formula in strictly pseudoconvex subdomains of complex manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1757--1779},
     year = {2004},
     volume = {195},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - S. G. Myslivets
AU  - N. N. Tarkhanov
TI  - On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1757
EP  - 1779
VL  - 195
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/
LA  - en
ID  - SM_2004_195_12_a3
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A S. G. Myslivets
%A N. N. Tarkhanov
%T On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds
%J Sbornik. Mathematics
%D 2004
%P 1757-1779
%V 195
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/
%G en
%F SM_2004_195_12_a3
A. M. Kytmanov; S. G. Myslivets; N. N. Tarkhanov. On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1757-1779. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/

[1] Lefschetz S., “Intersections and transformations of complexes and manifolds”, Trans. Amer. Math. Soc., 28 (1926), 1–49 | DOI | MR | Zbl

[2] Atiyah M. F., Bott R., “A Lefschetz fixed point formula for elliptic complexes. I”, Ann. of Math. (2), 86:2 (1967), 374–407 | DOI | MR | Zbl

[3] Brenner A. V., Shubin M. A., “Teorema Ati–Botta–Lefshetsa dlya mnogoobrazii s granitsei”, Funkts. analiz i ego prilozh., 15:4 (1981), 67–68 | MR | Zbl

[4] Brenner A. V., Shubin M. A., “Formula Ati–Botta–Lefshetsa dlya ellipticheskikh kompleksov na mnogoobrazii s kraem”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 38, VINITI, M., 1990, 119–183 | MR | Zbl

[5] Brenner A. V., “Teorema o fiksirovannykh tochkakh dlya $\partial_b$-kompleksa na strogo psevdovypuklykh mnogoobraziyakh”, UMN, 43:4 (1988), 165

[6] Tarkhanov N. N., Complexes of differential operators, Kluwer Acad. Publ., Dordrecht, NL, 1995 | MR | Zbl

[7] Kytmanov A., Myslivets S., Tarkhanov N., “Holomorphic Lefschetz formula for manifolds with boundary”, Math. Z., 246 (2004), 769–794 | DOI | MR | Zbl

[8] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Sovr. problemy matem. Fundament. napravleniya, 7, VINITI, M., 1985, 23–124 | MR

[9] Aizenberg L. A., Dautov Sh. A., Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975 | MR

[10] Hörmander L., The analysis of linear partial differential operators. V. 3. Pseudo-differential operators, Springer-Verlag, Berlin, 1985

[11] Pinchuk S. I., “Golomorfnye otobrazheniya v $\mathbb C^n$ i problema golomorfnoi ekvivalentnosti”, Sovr. problemy matem. Fundament. napravleniya, 9, VINITI, M., 1986, 195–224 | MR

[12] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl

[13] Kerzman N., Stein E. M., “The Szegö kernel in terms of Cauchy–Fantappiè kernels”, Duke Math. J., 45:2 (1978), 197–224 | DOI | MR | Zbl

[14] Meise R., Vogt D., Introduction on functional analysis, Clarendon Press, Oxford, 1997 | MR | Zbl

[15] Kytmanov A. M., Integral Bokhnera–Martinelli i ego prilozheniya, Nauka, Novosibirsk, 1992