@article{SM_2004_195_12_a3,
author = {A. M. Kytmanov and S. G. Myslivets and N. N. Tarkhanov},
title = {On a holomorphic {Lefschetz} formula in strictly pseudoconvex subdomains of complex manifolds},
journal = {Sbornik. Mathematics},
pages = {1757--1779},
year = {2004},
volume = {195},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/}
}
TY - JOUR AU - A. M. Kytmanov AU - S. G. Myslivets AU - N. N. Tarkhanov TI - On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds JO - Sbornik. Mathematics PY - 2004 SP - 1757 EP - 1779 VL - 195 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/ LA - en ID - SM_2004_195_12_a3 ER -
%0 Journal Article %A A. M. Kytmanov %A S. G. Myslivets %A N. N. Tarkhanov %T On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds %J Sbornik. Mathematics %D 2004 %P 1757-1779 %V 195 %N 12 %U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/ %G en %F SM_2004_195_12_a3
A. M. Kytmanov; S. G. Myslivets; N. N. Tarkhanov. On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1757-1779. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a3/
[1] Lefschetz S., “Intersections and transformations of complexes and manifolds”, Trans. Amer. Math. Soc., 28 (1926), 1–49 | DOI | MR | Zbl
[2] Atiyah M. F., Bott R., “A Lefschetz fixed point formula for elliptic complexes. I”, Ann. of Math. (2), 86:2 (1967), 374–407 | DOI | MR | Zbl
[3] Brenner A. V., Shubin M. A., “Teorema Ati–Botta–Lefshetsa dlya mnogoobrazii s granitsei”, Funkts. analiz i ego prilozh., 15:4 (1981), 67–68 | MR | Zbl
[4] Brenner A. V., Shubin M. A., “Formula Ati–Botta–Lefshetsa dlya ellipticheskikh kompleksov na mnogoobrazii s kraem”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 38, VINITI, M., 1990, 119–183 | MR | Zbl
[5] Brenner A. V., “Teorema o fiksirovannykh tochkakh dlya $\partial_b$-kompleksa na strogo psevdovypuklykh mnogoobraziyakh”, UMN, 43:4 (1988), 165
[6] Tarkhanov N. N., Complexes of differential operators, Kluwer Acad. Publ., Dordrecht, NL, 1995 | MR | Zbl
[7] Kytmanov A., Myslivets S., Tarkhanov N., “Holomorphic Lefschetz formula for manifolds with boundary”, Math. Z., 246 (2004), 769–794 | DOI | MR | Zbl
[8] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Sovr. problemy matem. Fundament. napravleniya, 7, VINITI, M., 1985, 23–124 | MR
[9] Aizenberg L. A., Dautov Sh. A., Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975 | MR
[10] Hörmander L., The analysis of linear partial differential operators. V. 3. Pseudo-differential operators, Springer-Verlag, Berlin, 1985
[11] Pinchuk S. I., “Golomorfnye otobrazheniya v $\mathbb C^n$ i problema golomorfnoi ekvivalentnosti”, Sovr. problemy matem. Fundament. napravleniya, 9, VINITI, M., 1986, 195–224 | MR
[12] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl
[13] Kerzman N., Stein E. M., “The Szegö kernel in terms of Cauchy–Fantappiè kernels”, Duke Math. J., 45:2 (1978), 197–224 | DOI | MR | Zbl
[14] Meise R., Vogt D., Introduction on functional analysis, Clarendon Press, Oxford, 1997 | MR | Zbl
[15] Kytmanov A. M., Integral Bokhnera–Martinelli i ego prilozheniya, Nauka, Novosibirsk, 1992