A~normalized family of representations of the group of motions of a~Euclidean space and the inverse problem of the representation theory of this group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1747-1756
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			There exists a well-known holomorphic family $\mathscr T^\lambda$ of representations of the isometry group of $\mathbb R$ such that $\mathscr T^{-\lambda}\sim\mathscr T^\lambda$ for $\lambda\ne0$. This paper presents a holomorphic family $V_R^{\lambda}$,  $|\lambda|$, such that $V_R^\lambda\sim\mathscr T^\lambda$ and $V_R^{-\lambda}= V_R^\lambda$ for $\lambda\ne0$. It is used for the construction of (generally speaking, reducible) representations of a fairly general form.
			
            
            
            
          
        
      @article{SM_2004_195_12_a2,
     author = {R. S. Ismagilov and Sh. Sh. Sultanov},
     title = {A~normalized family of representations of the group of motions of {a~Euclidean} space and the inverse problem of the representation theory of this group},
     journal = {Sbornik. Mathematics},
     pages = {1747--1756},
     publisher = {mathdoc},
     volume = {195},
     number = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/}
}
                      
                      
                    TY - JOUR AU - R. S. Ismagilov AU - Sh. Sh. Sultanov TI - A~normalized family of representations of the group of motions of a~Euclidean space and the inverse problem of the representation theory of this group JO - Sbornik. Mathematics PY - 2004 SP - 1747 EP - 1756 VL - 195 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/ LA - en ID - SM_2004_195_12_a2 ER -
%0 Journal Article %A R. S. Ismagilov %A Sh. Sh. Sultanov %T A~normalized family of representations of the group of motions of a~Euclidean space and the inverse problem of the representation theory of this group %J Sbornik. Mathematics %D 2004 %P 1747-1756 %V 195 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/ %G en %F SM_2004_195_12_a2
R. S. Ismagilov; Sh. Sh. Sultanov. A~normalized family of representations of the group of motions of a~Euclidean space and the inverse problem of the representation theory of this group. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1747-1756. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/
