A normalized family of representations of the group of motions of a Euclidean space and the inverse problem of the representation theory of this group
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1747-1756 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There exists a well-known holomorphic family $\mathscr T^\lambda$ of representations of the isometry group of $\mathbb R$ such that $\mathscr T^{-\lambda}\sim\mathscr T^\lambda$ for $\lambda\ne0$. This paper presents a holomorphic family $V_R^{\lambda}$, $|\lambda|, such that $V_R^\lambda\sim\mathscr T^\lambda$ and $V_R^{-\lambda}= V_R^\lambda$ for $\lambda\ne0$. It is used for the construction of (generally speaking, reducible) representations of a fairly general form.
@article{SM_2004_195_12_a2,
     author = {R. S. Ismagilov and Sh. Sh. Sultanov},
     title = {A~normalized family of representations of the group of motions of {a~Euclidean} space and the inverse problem of the representation theory of this group},
     journal = {Sbornik. Mathematics},
     pages = {1747--1756},
     year = {2004},
     volume = {195},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/}
}
TY  - JOUR
AU  - R. S. Ismagilov
AU  - Sh. Sh. Sultanov
TI  - A normalized family of representations of the group of motions of a Euclidean space and the inverse problem of the representation theory of this group
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1747
EP  - 1756
VL  - 195
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/
LA  - en
ID  - SM_2004_195_12_a2
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%A Sh. Sh. Sultanov
%T A normalized family of representations of the group of motions of a Euclidean space and the inverse problem of the representation theory of this group
%J Sbornik. Mathematics
%D 2004
%P 1747-1756
%V 195
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/
%G en
%F SM_2004_195_12_a2
R. S. Ismagilov; Sh. Sh. Sultanov. A normalized family of representations of the group of motions of a Euclidean space and the inverse problem of the representation theory of this group. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1747-1756. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a2/

[1] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[2] Gelfand I. M., “Ob odnoparametricheskikh gruppakh operatorov v normirovannom prostranstve”, Dokl. AN SSSR, 25:9 (1939), 711–716

[3] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[4] Krein S. G., Shikhvatov A. M., “Lineinye differentsialnye uravneniya na gruppe Li”, Funkts. analiz i ego prilozh., 4:1 (1970), 52–61 | MR | Zbl

[5] Kunze R. A., Stein E. M., “Uniformly bounded representations and harmonic analysis on the $2\times2$ unimodular group”, Amer. J. Math., 82:1 (1960), 1–62 | DOI | MR | Zbl

[6] Gelfand I. M., Graev M. I., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962

[7] Ismagilov R. S., “O lineinykh predstavleniyakh gruppy $\operatorname{SL}(2,\mathbb R)$”, Matem. sb., 74(116):4 (1967), 496–515 | MR | Zbl

[8] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963 | MR

[9] Mikhlin S. G., Lineinye uravneniya matematicheskoi fiziki, Nauka, M., 1964 | MR

[10] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR