Birth of step-like contrast structures connected with a cusp catastrophe
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1727-1746 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A special solution of the ordinary differential equation $u''_{xx}=u^3-tu-x$ is considered which relates to solutions of a broad spectrum of partial differential equations with a small parameter. The function $u(x,t)$ is the dominant term of asymptotic expressions with respect to the small parameter for these solutions near cusp points of the limiting solution. The existence of this special function $u(x,t)$ is proved; its uniform asymptotics at infinity are constructed and substantiated.
@article{SM_2004_195_12_a1,
     author = {A. M. Il'in and B. I. Suleimanov},
     title = {Birth of step-like contrast structures connected with a cusp catastrophe},
     journal = {Sbornik. Mathematics},
     pages = {1727--1746},
     year = {2004},
     volume = {195},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a1/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - B. I. Suleimanov
TI  - Birth of step-like contrast structures connected with a cusp catastrophe
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1727
EP  - 1746
VL  - 195
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a1/
LA  - en
ID  - SM_2004_195_12_a1
ER  - 
%0 Journal Article
%A A. M. Il'in
%A B. I. Suleimanov
%T Birth of step-like contrast structures connected with a cusp catastrophe
%J Sbornik. Mathematics
%D 2004
%P 1727-1746
%V 195
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a1/
%G en
%F SM_2004_195_12_a1
A. M. Il'in; B. I. Suleimanov. Birth of step-like contrast structures connected with a cusp catastrophe. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1727-1746. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a1/

[1] Ilin A. M., Suleimanov B. I., “O dvukh spetsialnykh funktsiyakh, svyazannykh s osobennostyu sborki”, Dokl. RAN, 387:2 (2002), 156–158 | MR

[2] Arnold V. I., Teoriya katastrof, Nauka, M., 1980 | MR

[3] De Villiers J. M., “A uniform asymptotic expansion of the positive solution of a non-linear Dirichlet problem”, Proc. London Math. Soc. (3), 27 (1973), 701–722 | DOI | MR | Zbl

[4] Ligthill M. J., “Viscosity effects in sound waves of finite amplitude”, Surveys in mechanics, eds. G. K. Batchelor, R.M. Davies, Cambridge Univ. Press, Cambridge, 1956, 250–351 | MR

[5] Ilin A. M., “Zadacha Koshi dlya odnogo kvazilineinogo uravneniya s malym parametrom”, Dokl. AN SSSR, 283:3 (1985), 530–534 | MR | Zbl

[6] Haberman R., “Note of the initial formation of shocks”, SIAM J. Appl. Math., 6:1 (1986), 16–19 | DOI | MR

[7] Haberman R., “The initial formation and stucture of two dimensional diffusive shock waves”, Wave Motion, 8 (1986), 267–276 | DOI | MR | Zbl

[8] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1987 | MR

[9] Zakharov S. V., Il'in A. M., “On the influence of small dissipation on the evolution of weak discontinuities”, Funct. Differ. Equ., 8:3–4 (2001), 257–271 | MR | Zbl

[10] Mizes R., Matematicheskaya teoriya techenii szhimaemoi zhidkosti, IL, M., 1961

[11] Bogaevskii V. N., Povzner V. N., Algebraicheskie metody v nelineinoi teorii vozmuschenii, Nauka, M., 1987 | MR | Zbl

[12] Maslov V. P., Mosolov P. P., Uravneniya odnomernogo barotropnogo gaza, Nauka, M., 1990 | MR

[13] Faif P., Grinli U., “Vnutrennie perekhodnye sloi dlya ellipticheskikh kraevykh zadach s malym parametrom”, UMN, 29:4 (1974), 103–130 | MR

[14] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1142–1149 | MR | Zbl

[15] Butuzov V. F., Nedelko I. V., “O neustoichivosti mnogomernykh kontrastnykh struktur”, Differents. uravneniya, 38:2 (2002), 222–233 | MR | Zbl

[16] Ilin A. M., Suleimanov B. I., “Koeffitsienty vnutrennego razlozheniya pri issledovanii asimptotiki nekotorykh singulyarno vozmuschennykh kraevykh zadach”, Dalnevost. matem. zhurn., 4:1 (2003), 78–85 | MR

[17] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Zinatne, Riga, 1978 | MR | Zbl

[18] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh kraevykh zadach obyknovennykh differentsialnykh uravnenii, Nauka, M., 1973 | MR | Zbl

[19] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–722 | MR | Zbl