The Gel'fand–Kirillov dimension of relatively free associative algebras
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1703-1726 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the Gel'fand–Kirillov dimension $\operatorname{GKdim}(A)$ is calculated for a relatively free associative algebra $A$ over an arbitrary ground field. This dimension is determined by the complexity type of the algebra $A$ or by the set of semidirect products of matrix algebras over a polynomial ring contained in the variety $\operatorname{Var}(A)$. The proof is comparatively elementary and does not use the local representability of relatively free algebras.
@article{SM_2004_195_12_a0,
     author = {A. Ya. Belov},
     title = {The {Gel'fand{\textendash}Kirillov} dimension of relatively free associative algebras},
     journal = {Sbornik. Mathematics},
     pages = {1703--1726},
     year = {2004},
     volume = {195},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - The Gel'fand–Kirillov dimension of relatively free associative algebras
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1703
EP  - 1726
VL  - 195
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/
LA  - en
ID  - SM_2004_195_12_a0
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T The Gel'fand–Kirillov dimension of relatively free associative algebras
%J Sbornik. Mathematics
%D 2004
%P 1703-1726
%V 195
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/
%G en
%F SM_2004_195_12_a0
A. Ya. Belov. The Gel'fand–Kirillov dimension of relatively free associative algebras. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1703-1726. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/

[1] Belov A. Ya., Algebry s polinomialnymi tozhdestvami: predstavleniya i kombinatornye metody, Dis. ... kand. dokt. fiz.-matem. nauk, MGU, M., 2002

[2] Belov A. Ya., “O ratsionalnosti ryadov Gilberta otnositelno svobodnykh algebr”, UMN, 52:2 (1997), 153–154 | MR | Zbl

[3] Belov A., Borisenko V., Latyshev V., Monomial algebras, Plenum, New York, 1998

[4] Procesi C., Rings with polynomial identities, Pure Appl. Math., 17, Marcel Dekker, Inc. VIII, New York, 1973 | MR | Zbl

[5] Polikarpov S. V., Shestakov I. P., “Neassotsiativnye affinnye algebry”, Algebra i logika, 29:6 (1990), 709–703 | MR

[6] Polikarpov S. V., “Svobodnye affinnye algebry Alberta”, Sib. matem. zhurn., 32:6 (1991), 131–141 | MR | Zbl

[7] Grishin A. V., “Asimptoticheskie svoistva svobodnykh konechno porozhdennykh algebr nekotorykh mnogoobrazii”, Algebra i logika, 22:6 (1983), 608–625 | MR | Zbl

[8] Grishin A. V., “Pokazatel rosta mnogoobraziya algebr i ego prilozheniya”, Algebra i logika, 28:5 (1987), 536–557 | MR

[9] Giambruno A., Zaicev M., “Minimal varieties of exponential growth”, Proc. Amer. Math. Soc., 129 (2001), 59–67 | DOI | MR | Zbl

[10] Giambruno A., Zaicev M., “Minimal varieties of algebras of exponential growth”, Adv. Math., 174:2 (2003), 310–323 | DOI | MR | Zbl

[11] Giambruno A., Zaicev M., “Minimal varieties of algebras of exponential growth”, Electron. Res. Announc. Amer. Math. Soc., 6 (2000), 40–44 | DOI | MR | Zbl

[12] Dzhambruno A., Zaitsev M. V., “Minimalnye mnogoobraziya s zadannym rostom korazmernostei”, Vestn. MGU. Ser. 1. Matem., mekh., 2003, no. 1, 20–22 | MR

[13] Kemer A. R., “Tozhdestva konechno porozhdennykh algebr nad beskonechnym polem”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 726–753 | Zbl

[14] Zubrilin K. A., “Algebry, udovletvoryayuschie tozhdestvam Kapelli”, Matem. sb., 186:3 (1995), 53–64 | MR | Zbl

[15] Kemer A. R., Nematrichnye mnogoobraziya, mnogoobraziya so stepennym rostom i konechno porozhdennye PI-algebry, Dis. ... kand. fiz. mat. nauk, NGU, Novosibirsk, 1981