The Gel'fand--Kirillov dimension of relatively free associative algebras
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1703-1726

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the Gel'fand–Kirillov dimension $\operatorname{GKdim}(A)$ is calculated for a relatively free associative algebra $A$ over an arbitrary ground field. This dimension is determined by the complexity type of the algebra $A$ or by the set of semidirect products of matrix algebras over a polynomial ring contained in the variety $\operatorname{Var}(A)$. The proof is comparatively elementary and does not use the local representability of relatively free algebras.
@article{SM_2004_195_12_a0,
     author = {A. Ya. Belov},
     title = {The {Gel'fand--Kirillov} dimension of relatively free associative algebras},
     journal = {Sbornik. Mathematics},
     pages = {1703--1726},
     publisher = {mathdoc},
     volume = {195},
     number = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - The Gel'fand--Kirillov dimension of relatively free associative algebras
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1703
EP  - 1726
VL  - 195
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/
LA  - en
ID  - SM_2004_195_12_a0
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T The Gel'fand--Kirillov dimension of relatively free associative algebras
%J Sbornik. Mathematics
%D 2004
%P 1703-1726
%V 195
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/
%G en
%F SM_2004_195_12_a0
A. Ya. Belov. The Gel'fand--Kirillov dimension of relatively free associative algebras. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1703-1726. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/