The Gel'fand--Kirillov dimension of relatively free associative algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1703-1726
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the Gel'fand–Kirillov dimension $\operatorname{GKdim}(A)$ is calculated for a relatively free associative algebra $A$ over an arbitrary ground field. This dimension is determined by the complexity type of the algebra $A$ or by the set of semidirect products of matrix algebras over a polynomial ring contained in the variety $\operatorname{Var}(A)$. The proof is comparatively elementary and does not use the local representability of relatively free algebras.
			
            
            
            
          
        
      @article{SM_2004_195_12_a0,
     author = {A. Ya. Belov},
     title = {The {Gel'fand--Kirillov} dimension of relatively free associative algebras},
     journal = {Sbornik. Mathematics},
     pages = {1703--1726},
     publisher = {mathdoc},
     volume = {195},
     number = {12},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/}
}
                      
                      
                    A. Ya. Belov. The Gel'fand--Kirillov dimension of relatively free associative algebras. Sbornik. Mathematics, Tome 195 (2004) no. 12, pp. 1703-1726. http://geodesic.mathdoc.fr/item/SM_2004_195_12_a0/
