Birationally rigid varieties with a pencil of Fano double covers. II
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1665-1702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the birational geometry of Fano fibrations $\pi\colon V\to\mathbb P^1$ whose fibres are Fano double hypersurfaces of index 1 is continued. Birational rigidity is proved for the majority of families of this type, which do not satisfy the condition of sufficient twistedness over the base (in particular, this means that there exist no other structures of a fibration into rationally connected varieties) and the groups of birational self-maps are computed. The principal components of the method of maximal singularities are considerably improved, chiefly the techniques of counting multiplicities for fibrations $V/\mathbb P^1$ into Fano varieties over the line.
@article{SM_2004_195_11_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid varieties with a pencil of {Fano} double {covers.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1665--1702},
     year = {2004},
     volume = {195},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid varieties with a pencil of Fano double covers. II
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1665
EP  - 1702
VL  - 195
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/
LA  - en
ID  - SM_2004_195_11_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid varieties with a pencil of Fano double covers. II
%J Sbornik. Mathematics
%D 2004
%P 1665-1702
%V 195
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/
%G en
%F SM_2004_195_11_a5
A. V. Pukhlikov. Birationally rigid varieties with a pencil of Fano double covers. II. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1665-1702. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/

[1] Pukhlikov A. V., “Biratsionalno zhestkie mnogoobraziya s puchkom dvoinykh nakrytii Fano. I”, Matem. sb., 195:7 (2004), 127–160 | MR | Zbl

[2] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[3] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64:3 (2000), 131–150 | MR | Zbl

[4] Pukhlikov A. V., “Biratsionalno zhestkie dvoinye giperpoverkhnosti Fano”, Matem. sb., 191:6 (2000), 101–126 | MR | Zbl

[5] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[6] Pukhlikov A. V., “Certain examples of birationally rigid varieties with a pencil of double quadrics”, J. Math. Sci., 94:1 (1999), 986–995 | DOI | MR | Zbl

[7] Pukhlikov A. V., “Biratsionalnye avtomorfizmy algebraicheskikh mnogoobrazii s puchkom dvoinykh kvadrik”, Matem. zametki, 67:2 (2000), 241–249 | MR | Zbl

[8] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit birational geometry of threefolds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl

[9] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | MR | Zbl

[10] Pukhlikov A. V., “Biratsionalno zhestkie iterirovannye dvoinye nakrytiya Fano”, Izv. RAN. Ser. matem., 67:3 (2003), 139–182 | MR | Zbl

[11] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl

[12] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl

[13] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2. II”, Matem. sb., 194:5 (2003), 31–60 | MR | Zbl

[14] Sobolev I. V., “Ob odnoi serii biratsionalno zhestkikh mnogoobrazii s puchkom giperpoverkhnostei Fano”, Matem. sb., 192:10 (2001), 123–130 | MR | Zbl

[15] Sobolev I. V., “Biratsionalnye avtomorfizmy odnogo klassa mnogoobrazii, rassloennykh na kubicheskie poverkhnosti”, Izv. RAN. Ser. matem., 66:1 (2002), 203–224 | MR | Zbl

[16] Brown G., Corti A., Zucconi F., Birational geometry of 3-fold Mori fibre spaces, Preprint , 2003 arXiv:math.AG/0307301 | MR

[17] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 918–945 | MR | Zbl

[18] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 371–408 | MR | Zbl

[19] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl

[20] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR