Birationally rigid varieties with a pencil of Fano double covers.~II
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1665-1702

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the birational geometry of Fano fibrations $\pi\colon V\to\mathbb P^1$ whose fibres are Fano double hypersurfaces of index 1 is continued. Birational rigidity is proved for the majority of families of this type, which do not satisfy the condition of sufficient twistedness over the base (in particular, this means that there exist no other structures of a fibration into rationally connected varieties) and the groups of birational self-maps are computed. The principal components of the method of maximal singularities are considerably improved, chiefly the techniques of counting multiplicities for fibrations $V/\mathbb P^1$ into Fano varieties over the line.
@article{SM_2004_195_11_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid varieties with a pencil of {Fano} double {covers.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1665--1702},
     publisher = {mathdoc},
     volume = {195},
     number = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid varieties with a pencil of Fano double covers.~II
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1665
EP  - 1702
VL  - 195
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/
LA  - en
ID  - SM_2004_195_11_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid varieties with a pencil of Fano double covers.~II
%J Sbornik. Mathematics
%D 2004
%P 1665-1702
%V 195
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/
%G en
%F SM_2004_195_11_a5
A. V. Pukhlikov. Birationally rigid varieties with a pencil of Fano double covers.~II. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1665-1702. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a5/