Circular parameters of polynomials orthogonal on several arcs of the unit circle
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1639-1663 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour of the circular parameters $(a_n)$ of the polynomials orthogonal on the unit circle with respect to Geronimus measures is analysed. It is shown that only when the harmonic measures of the arcs making up the support of the orthogonality measure are rational do the corresponding parameters form a pseudoperiodic sequence starting from some index (that is, after a suitable rotation of the circle and the corresponding modification of the orthogonality measures they form a periodic sequence). In addition it is demonstrated that if the harmonic measures of these arcs are linearly independent over the field of rational numbers, then the sets of limit points of the sequences of absolute values of the circular parameters $|a_n|$ and of their ratios $(a_{n+k}/a_n)_{n=1}^\infty$ are a closed interval on the real line and a continuum in the complex plane, respectively.
@article{SM_2004_195_11_a4,
     author = {A. L. Lukashov},
     title = {Circular parameters of polynomials orthogonal on several arcs of the unit circle},
     journal = {Sbornik. Mathematics},
     pages = {1639--1663},
     year = {2004},
     volume = {195},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a4/}
}
TY  - JOUR
AU  - A. L. Lukashov
TI  - Circular parameters of polynomials orthogonal on several arcs of the unit circle
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1639
EP  - 1663
VL  - 195
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a4/
LA  - en
ID  - SM_2004_195_11_a4
ER  - 
%0 Journal Article
%A A. L. Lukashov
%T Circular parameters of polynomials orthogonal on several arcs of the unit circle
%J Sbornik. Mathematics
%D 2004
%P 1639-1663
%V 195
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a4/
%G en
%F SM_2004_195_11_a4
A. L. Lukashov. Circular parameters of polynomials orthogonal on several arcs of the unit circle. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1639-1663. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a4/

[1] Segë G., Ortogonalnye mnogochleny, GIFML, M., 1962

[2] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i na otrezke (otsenki, asimptoticheskie formuly, ortogonalnye ryady), GIFML, M., 1958

[3] Jones W. B., Njåstad O., Thron W. J., “Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle”, Bull. London Math. Soc., 21 (1989), 113–152 | DOI | MR | Zbl

[4] Rakhmanov E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov, ortogonalnykh na okruzhnosti s vesami, ne udovletvoryayuschimi usloviyu Segë”, Matem. sb., 130(172) (1986), 151–169 | MR

[5] Badkov V. M., “Asimptoticheskie i ekstremalnye svoistva polinomov pri nalichii osobennostei u vesa”, Trudy MIAN, 198, 1992, 41–88 | MR | Zbl

[6] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl

[7] Geronimus Ya. L., “O polinomakh, ortogonalnykh na kruge, o trigonometricheskoi probleme momentov i ob assotsiirovannykh s neyu funktsiyakh tipa Karateodori i Shura”, Matem. sb., 15(57) (1944), 99–130 | MR | Zbl

[8] Akhiezer N. I., “O polinomakh, ortogonalnykh na duge okruzhnosti”, Dokl. AN SSSR, 130 (1960), 247–250 | Zbl

[9] Khrushchev S., “Schur's algorithm, orthogonal polynomials and convergence of Wall's continued fractions in $L^2(\mathbb T)$”, J. Approx. Theory, 108 (2001), 161–248 | DOI | MR | Zbl

[10] Tomchuk Yu. Ya., “O mnogochlenakh, ortogonalnykh na zadannoi sisteme dug edinichnoi okruzhnosti”, Dokl. AN SSSR, 151 (1963), 55–58 | MR | Zbl

[11] Golinskii L., “Akhieser's orthogonal polynomials and Bernstein–Szegő method for a circular arc”, J. Approx. Theory, 95 (1998), 229–263 | DOI | MR | Zbl

[12] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl

[13] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125(167) (1984), 231–258 | MR

[14] Peherstorfer F., “Elliptic orthogonal and extremal polynomials”, Proc. London Math. Soc. (3), 70 (1995), 605–624 | DOI | MR | Zbl

[15] Lukashov A. L., Peherstorfer F., “Automorphic orthogonal and extremal polynomials”, Canad. J. Math., 55 (2003), 576–608 | MR | Zbl

[16] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104(146) (1977), 272–291

[17] Geronimo J. S., Johnson R., “An inverse problem associated with polynomials orthogonal on the unit circle”, Comm. Math. Phys., 193 (1998), 125–150 | DOI | MR | Zbl

[18] Peherstorfer F., “On Bernstein–Szegő orthogonal polynomials on several intervals”, SIAM J. Math. Anal., 21 (1990), 461–482 | DOI | MR | Zbl

[19] Peherstorfer F., Steinbauer R., “Orthogonal polynomials on arcs of the unit circle. I”, J. Approx. Theory, 85 (1996), 140–184 | DOI | MR | Zbl

[20] Peherstorfer F., Steinbauer R., “Orthogonal polynomials on arcs of the unit circle. II. Orthogonal polynomials with periodic reflection coefficients”, J. Approx. Theory, 87 (1996), 60–102 | DOI | MR | Zbl

[21] Barrios Rolanía D., Lopez Lagomasino G., “Ratio asymptotics for polynomials orthogonal on arcs of the unit circle”, Constr. Approx., 15 (1999), 1–31 | DOI | MR | Zbl

[22] Akhieser N. I., “Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen”, Izv. Kazanskogo fiz.-matem. ob-va, 3:3 (1928), 1–69

[23] Lukashov A. L., “Algebraicheskie drobi Chebyshëva–Markova na neskolkikh otrezkakh”, Anal. Math., 24 (1998), 111–130 | DOI | MR | Zbl

[24] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin, 1994

[25] Bogatyrëv A. B., “Ob effektivnom vychislenii mnogochlenov Chebyshëva dlya neskolkikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | MR

[26] Baker H. F., Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[27] Burnside W., “Further note on automorphic functions”, Proc. London Math. Soc. (3), 23 (1892), 281–295 | DOI

[28] Burnside W., “On a class of automorphic functions”, Proc. London Math. Soc. (3), 23 (1892), 49–88 | DOI

[29] Geronimus Ya. L., “Polinomy, ortogonalnye na kruge, i ikh prilozheniya”, Zapiski In-ta matematiki i mekhaniki i Kharkovskogo matem. ob-va, 19 (1948), 35–120 | MR | Zbl

[30] Peherstorfer F., Steinbauer R., “Strong asymptotics of orthonormal polynomials with the aid of Green's function”, SIAM J. Math. Anal., 32 (2000), 385–402 | DOI | MR | Zbl

[31] Peherstorfer F., “Orthogonal and extremal polynomials on several intervals”, J. Comput. Appl. Math., 48 (1993), 187–205 | DOI | MR | Zbl

[32] Saff E. B., Totik V., Logarithmic potentials with external fields, Springer, Berlin, 1997 | MR

[33] Peherstorfer F., “Deformation of minimal polynomials and approximation of several intervals by an inverse polynomial mapping”, J. Approx. Theory, 111 (2001), 180–195 | DOI | MR | Zbl

[34] Totik V., “Polynomial inverse images and polynomial inequalities”, Acta Math., 187 (2001), 139–160 | DOI | MR | Zbl

[35] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR

[36] Dubrovin B. A., Rimanovy poverkhnosti i nelineinye uravneniya, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001

[37] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Amer. Math. Soc., Providence, RI, 2000 | MR

[38] Ford L. R., Avtomorfnye funktsii, ONTI, M.–L., 1936

[39] Peherstorfer F., Steinbauer R., “Perturbation of orthogonal polynomials on the unit circle – a survey”, Proc. Workshop Orthogonal Polynomials on the Unit Circle, eds. M. Alfaro et al, Universidad Carlos III, Leganés, 1994, 97–119 | MR

[40] Lukashov A. L., “Mnogochleny, ortogonalnye na neskolkikh dugakh”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 10-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo un-ta, Saratov, 2000, 83–84

[41] Lukashov A. L., “Krugovye parametry mnogochlenov, ortogonalnykh na neskolkikh dugakh edinichnoi okruzhnosti”, Teoriya priblizheniya funktsii i operatorov, Tezisy dokladov Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya S. B. Stechkina, UrGU, Ekaterinburg, 2000, 95–97 | MR

[42] Magnus A., “Recurrence coefficients for orthogonal polynomials on connected and non connected sets”, Padé approximation and its application, Lecture Notes in Math., 765, Springer, Berlin, 1979, 150–171 | MR

[43] Lukashov A. L., Peherstorfer F., “Zeros of polynomials orthogonal on two arcs of the unit circle”, J. Approximation Theory, 132:1 (2005), 42–71 | DOI | MR | Zbl