Singular solutions of higher-order non-linear elliptic systems
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1607-1638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour of solutions of non-linear elliptic systems is studied in the neighbourhood of a singular point, finite or infinite. It is shown that if the order of the singularity lies in a certain interval depending on the modulus of ellipticity of the system, then it is equal to the order of the singularity of some singular solution for the poly-Laplacian operator. Sharp two-sided energy estimates in the neighbourhood of the singular point are obtained for such solutions. Global solutions are considered, for which lower energy bounds are derived from upper estimates. Counterexamples constructed for second-order equations and systems demonstrate that the interval of regular behaviour of the order of the singularity is precisely described.
@article{SM_2004_195_11_a3,
     author = {E. A. Kalita},
     title = {Singular solutions of higher-order non-linear elliptic systems},
     journal = {Sbornik. Mathematics},
     pages = {1607--1638},
     year = {2004},
     volume = {195},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a3/}
}
TY  - JOUR
AU  - E. A. Kalita
TI  - Singular solutions of higher-order non-linear elliptic systems
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1607
EP  - 1638
VL  - 195
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a3/
LA  - en
ID  - SM_2004_195_11_a3
ER  - 
%0 Journal Article
%A E. A. Kalita
%T Singular solutions of higher-order non-linear elliptic systems
%J Sbornik. Mathematics
%D 2004
%P 1607-1638
%V 195
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a3/
%G en
%F SM_2004_195_11_a3
E. A. Kalita. Singular solutions of higher-order non-linear elliptic systems. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1607-1638. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a3/

[1] Kondrat'ev V. A., Oleinik O. A., “On the behaviour at infinity of solutions of elliptic systems with a finite energy integral”, Arch. Ration. Mech. Anal., 93:1 (1987), 75–99 | MR

[2] Serrin J., “Local behaviour of solutions of quasilinear elliptic equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[3] Cordes H. O., “Über die erste Randvertaufgabe bei quasilinear Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen”, Math. Ann., 131:3 (1956), 287–312 | DOI | MR

[4] Kalita E. A., “Ob osobykh tochkakh reshenii nelineinykh ellipticheskikh uravnenii i sistem vysokogo poryadka”, Matem. sb., 184:7 (1993), 117–143 | MR | Zbl

[5] Kalita E. A., “Teorema Liuvillya dlya ellipticheskikh sistem tipa Kordesa vysokogo poryadka”, Ukr. matem. zhurn., 43:2 (1991), 199–205 | MR | Zbl

[6] Kalita E. A., “Razreshimost nelineinykh ellipticheskikh sistem v prostranstvakh slabee estestvennogo energeticheskogo”, Izv. RAN. Ser. matem., 61:2 (1997), 53–80 | MR | Zbl

[7] Koshelev A. I., Chelkak S. I., Regularity of solutions of quasilinear elliptic systems, Teubner, Leipzig, 1985 | MR | Zbl

[8] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[9] Kalita E. A., “Regulyarnost po Morri reshenii nelineinykh ellipticheskikh sistem proizvolnogo poryadka pri ogranicheniyakh na modul elliptichnosti”, Ukr. matem. zhurn., 54:11 (2002), 1452–1466 | MR | Zbl

[10] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhniki. Matem. analiz, 21, VINITI, M., 1983, 42–129 | MR