Cauchy problem for non-linear systems of equations in the critical case
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1575-1605
Voir la notice de l'article provenant de la source Math-Net.Ru
The large-time asymptotic behaviour is studied for a system of non-linear evolution dissipative equations
\begin{gather*}
u_t+\mathscr N(u,u)+\mathscr Lu=0, \qquad x\in\mathbb R^n, \quad t>0,
\\
u(0,x)=\widetilde u(x), \qquad x\in\mathbb R^n,
\end{gather*}
where $\mathscr L$ is a linear pseudodifferential operator $\mathscr Lu=\overline{\mathscr F}_{\xi\to x}(L(\xi)\widehat u(\xi))$ and the non-linearity $\mathscr N$ is a quadratic pseudodifferential operator
$$
\mathscr N(u,u)=\overline{\mathscr F}_{\xi\to x}\sum_{k,l=1}^m\int_{\mathbb R^n}A^{kl}(t,\xi,y)\widehat u_k(t,\xi-y)\widehat u_l(t,y)\,dy,
$$
where $\widehat u\equiv\mathscr F_{x\to\xi}u$ is the Fourier transform. Under the assumptions that the initial data $\widetilde u\in\mathbf H^{\beta,0}\cap\mathbf H^{0,\beta}$, $\beta>n/2$ are sufficiently small, where
$$
\mathbf H^{n,m}=\{\phi\in\mathbf L^2:\|\langle x\rangle^m\langle i\partial_x\rangle^n\phi(x)\|_{\mathbf L^2}\infty\}, \qquad \langle x\rangle=\sqrt{1+x^2}\,,
$$
is a Sobolev weighted space, and that the total mass vector $\displaystyle M=\int\widetilde u(x)\,dx\ne0$ is non-zero it is proved that the leading term in the large-time asymptotic expansion of solutions in the critical case is a self-similar solution defined uniquely by the total mass vector $M$ of the initial data.
@article{SM_2004_195_11_a2,
author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
title = {Cauchy problem for non-linear systems of equations in the critical case},
journal = {Sbornik. Mathematics},
pages = {1575--1605},
publisher = {mathdoc},
volume = {195},
number = {11},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/}
}
TY - JOUR AU - E. I. Kaikina AU - P. I. Naumkin AU - I. A. Shishmarev TI - Cauchy problem for non-linear systems of equations in the critical case JO - Sbornik. Mathematics PY - 2004 SP - 1575 EP - 1605 VL - 195 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/ LA - en ID - SM_2004_195_11_a2 ER -
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Cauchy problem for non-linear systems of equations in the critical case. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1575-1605. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/