Cauchy problem for non-linear systems of equations in the critical case
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1575-1605 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The large-time asymptotic behaviour is studied for a system of non-linear evolution dissipative equations \begin{gather*} u_t+\mathscr N(u,u)+\mathscr Lu=0, \qquad x\in\mathbb R^n, \quad t>0, \\ u(0,x)=\widetilde u(x), \qquad x\in\mathbb R^n, \end{gather*} where $\mathscr L$ is a linear pseudodifferential operator $\mathscr Lu=\overline{\mathscr F}_{\xi\to x}(L(\xi)\widehat u(\xi))$ and the non-linearity $\mathscr N$ is a quadratic pseudodifferential operator $$ \mathscr N(u,u)=\overline{\mathscr F}_{\xi\to x}\sum_{k,l=1}^m\int_{\mathbb R^n}A^{kl}(t,\xi,y)\widehat u_k(t,\xi-y)\widehat u_l(t,y)\,dy, $$ where $\widehat u\equiv\mathscr F_{x\to\xi}u$ is the Fourier transform. Under the assumptions that the initial data $\widetilde u\in\mathbf H^{\beta,0}\cap\mathbf H^{0,\beta}$, $\beta>n/2$ are sufficiently small, where $$ \mathbf H^{n,m}=\{\phi\in\mathbf L^2:\|\langle x\rangle^m\langle i\partial_x\rangle^n\phi(x)\|_{\mathbf L^2}<\infty\}, \qquad \langle x\rangle=\sqrt{1+x^2}\,, $$ is a Sobolev weighted space, and that the total mass vector $\displaystyle M=\int\widetilde u(x)\,dx\ne0$ is non-zero it is proved that the leading term in the large-time asymptotic expansion of solutions in the critical case is a self-similar solution defined uniquely by the total mass vector $M$ of the initial data.
@article{SM_2004_195_11_a2,
     author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
     title = {Cauchy problem for non-linear systems of equations in the critical case},
     journal = {Sbornik. Mathematics},
     pages = {1575--1605},
     year = {2004},
     volume = {195},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/}
}
TY  - JOUR
AU  - E. I. Kaikina
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Cauchy problem for non-linear systems of equations in the critical case
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1575
EP  - 1605
VL  - 195
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/
LA  - en
ID  - SM_2004_195_11_a2
ER  - 
%0 Journal Article
%A E. I. Kaikina
%A P. I. Naumkin
%A I. A. Shishmarev
%T Cauchy problem for non-linear systems of equations in the critical case
%J Sbornik. Mathematics
%D 2004
%P 1575-1605
%V 195
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/
%G en
%F SM_2004_195_11_a2
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Cauchy problem for non-linear systems of equations in the critical case. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1575-1605. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a2/

[1] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977

[2] Dobrokhotov S. Yu., “Nelokalnye analogi nelineinogo uravneniya Bussineska dlya poverkhnostnykh voln nad nerovnym dnom i ikh asimptoticheskie resheniya”, Dokl. AN SSSR, 292:1 (1987), 63–67 | MR | Zbl

[3] Broer L. J. F., “Approximate equations for long water waves”, Appl. Sci., 31 (1975), 377–395 | DOI | MR | Zbl

[4] Kaup D. J., “A higher-order water-wave equation and the method for solving it”, Progr. Theoret. Phys., 54 (1975), 396–408 | DOI | MR | Zbl

[5] Naumkin P. I., Shishmarev I. A., Nonlinear nonlocal equations in the theory of waves, Transl. Math. Monogr., 133, Providence, RI, 1994 | MR

[6] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[7] Deift P. A., Venakides S., Zhou X., “The collisionless shock region for the long-time behavior of solutions of the KdV equation”, Comm. Pure Appl. Math., 47:2 (1994), 199–206 | DOI | MR | Zbl

[8] Dix D. B., Large-time behavior of solutions of linear dispersive equations, Lecture Notes in Math., 1668, Springer-Verlag, Berlin, 1997 | MR | Zbl

[9] Kaikina E. I., Naumkin P. I., Shishmarëv I. A., “Asimptotika reshenii nelineinykh dissipativnykh sistem uravnenii”, Izv. RAN. Ser. matem., 68:3 (2004), 29–62 | MR

[10] Amick C. J., Bona J. L., Schonbek M. E., “Decay of solutions of some nonlinear wave equations”, J. Differential Equations, 81 (1989), 1–49 | DOI | MR | Zbl

[11] Biler P., Karch G., Woyczynski W. A., “Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18:5 (2001), 613–637 | DOI | MR | Zbl

[12] Carpio A., “Large time behavior in some convection-diffusion equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23:4 (1996), 551–574 | MR | Zbl

[13] Dix D. B., “Temporal asymptotic behavior of solutions of the Benjamin–Ono–Burgers equation”, J. Differential Equations, 90 (1991), 238–287 | DOI | MR | Zbl

[14] Escobedo M., Vazquez J. L., Zuazua E., “A diffusion-convestion equation in several space dimensions”, Indiana Univ. Math. J., 42:4 (1993), 1413–1440 | DOI | MR | Zbl

[15] Escobedo M., Kavian O., Matano H., “Large time behavior of solutions of a dissipative nonlinear heat equation”, Comm. Partial Differential Equations, 20 (1994), 1427–1452 | DOI | MR

[16] Escobedo M., Zuazua E., “Long-time behavior for a convection-diffusion equation in higher dimensions”, SIAM J. Math. Anal., 28:3 (1994), 570–594 | DOI | MR

[17] Galaktionov V. A., Vazquez J. L., “Asymptotic behavior of nonlinear parabolic equations with critical exponents. A dynamical systems approach”, J. Funct. Anal., 100:2 (1991), 435–462 | DOI | MR | Zbl

[18] Galaktionov V. A., Kurdyumov S. P., Samarskii A. A., “Asimptoticheskie sobstvennye funktsii zadachi Koshi dlya nelineinykh parabolicheskikh uravnenii”, Matem. sb., 126:4 (1985), 435–472 | MR

[19] Giga Y., Kambe T., “Large time behavior of vorticity two-dimensional viscous flow and its application to vortex formation”, Comm. Math. Phys., 117 (1988), 549–568 | DOI | MR | Zbl

[20] Gmira A., Veron L., “Large time behavior of the solutions of a semilinear parabolic equation in $\mathbb R^n$”, J. Differential Equations, 53 (1984), 258–276 | DOI | MR | Zbl

[21] Ilin A. M., Oleinik O. A., “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51 (93) (1960), 191–216 | MR | Zbl

[22] Karch G., “Self-similar large time behavior of solutions to the Korteweg–de Vries–Burgers equation”, Nonlinear Anal., 35A:2 (1999), 199–219 | DOI | MR

[23] Liu T. P., Pierre M., “Source solutions and asymptotic behavior in conservation laws”, J. Differential Equations, 51 (1984), 419–441 | DOI | MR | Zbl

[24] Zuazua E., “A dynamical system approach to the self similar large time behavior in scalar convection-diffusion equations”, J. Differential Equations, 108 (1994), 1–35 | DOI | MR | Zbl

[25] Zuazua E., “Some recent results on the large time behavior for scalar parabolic conservation laws”, Elliptic and parabolic problems, Proceedings of the 2nd European conference (Pont-a-Mousson, June 1994), Pitman Res. Notes Math. Ser., 325, eds. C. Bandle et al., Longman, Harlow, 1995, 251–263 | MR | Zbl

[26] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Teoriya differentsialnykh uravnenii, 3, Nauka, M., 1967

[27] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[28] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR

[29] Hopf E., “The partial differential equation $u_{t}+uu_{x}=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[30] Naumkin P. I., Shishmarëv I. A., “Asimptoticheskoe predstavlenie poverkhnostnykh voln v vide dvukh beguschikh voln Byurgersa”, Funkts. analiz i ego prilozh., 29:3 (1995), 25–40 | MR | Zbl

[31] Varlamov V. V., “On the Cauchy problem for the damped Boussinesq equation”, Differential Integral Equations, 9:3 (1996), 619–634 | MR | Zbl