An analogue of Wagner's theorem for decompositions of matrix algebras
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1557-1574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Wagner's celebrated theorem states that a finite affine plane whose collineation group is transitive on lines is a translation plane. The notion of an orthogonal decomposition (OD) of a classically semisimple associative algebra introduced by the author allows one to draw an analogy between finite affine planes of order $n$ and ODs of the matrix algebra $M_n(\mathbb C)$ into a sum of subalgebras conjugate to the diagonal subalgebra. These ODs are called WP-decompositions and are equivalent to the well-known ODs of simple Lie algebras of type $A_{n-1}$ into a sum of Cartan subalgebras. In this paper we give a detailed and improved proof of the analogue of Wagner's theorem for WP-decompositions of the matrix algebra of odd non-square order an outline of which was earlier published in a short note in “Russian Math. Surveys” in 1994. In addition, in the framework of the theory of ODs of associative algebras, based on the method of idempotent bases, we obtain an elementary proof of the well-known Kostrikin–Tiep theorem on irreducible ODs of Lie algebras of type $A_{n-1}$ in the case where $n$ is a prime-power.
@article{SM_2004_195_11_a1,
     author = {D. N. Ivanov},
     title = {An analogue of {Wagner's} theorem for decompositions of matrix algebras},
     journal = {Sbornik. Mathematics},
     pages = {1557--1574},
     year = {2004},
     volume = {195},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a1/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - An analogue of Wagner's theorem for decompositions of matrix algebras
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1557
EP  - 1574
VL  - 195
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a1/
LA  - en
ID  - SM_2004_195_11_a1
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T An analogue of Wagner's theorem for decompositions of matrix algebras
%J Sbornik. Mathematics
%D 2004
%P 1557-1574
%V 195
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a1/
%G en
%F SM_2004_195_11_a1
D. N. Ivanov. An analogue of Wagner's theorem for decompositions of matrix algebras. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1557-1574. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a1/

[1] Wagner A., “On finite affine line transitive planes”, Math. Z., 87 (1965), 1–11 | DOI | MR | Zbl

[2] Hughes D. R., Piper F. C., Projective planes, Springer, Berlin, 1982 | MR

[3] Ivanov D. N., “Ortogonalnye razlozheniya poluprostykh assotsiativnykh algebr”, Vestn. MGU. Ser. 1. Matem., mekh., 43:1 (1988), 10–15 | MR | Zbl

[4] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., “Ortogonalnye razlozheniya prostykh algebr Li tipa $A_n$”, Tr. MIAN, 158, 1981, 105–120 | MR | Zbl

[5] Ivanov D. N., “Analog teoremy Vagnera dlya ortogonalnykh razlozhenii algebry matrits $M_n(\mathbb C)$”, UMN, 49:1 (1994), 215–216 | MR | Zbl

[6] Kostrikin A. I., Fam Khyu Tep, “Klassifikatsiya neprivodimykh razlozhenii prostykh algebr Li tipa $A_n$”, Algebra i analiz, 3:3 (1991), 86–109 | MR | Zbl

[7] Ivanov D. N., “Ortogonalnye razlozheniya prostykh algebr Li tipa $A_{p^n-1}$ i $D_n$ s konechnym chislom klassov podobnykh invariantnykh podreshetok”, Vestn. MGU. Ser. 1. Matem., mekh., 1989, no. 2, 40–43 | MR | Zbl

[8] Kostrikin A. I., Pham Huu Tiep., Orthogonal decompositions and integral lattices, Walter de Gruyter, Berlin, 1994 | MR

[9] Bahturin Yu. A., Sehgal S. K., Zaicev M. V., “Groups gradings on associative algebras”, J. Algebra, 241 (2001), 677–698 | DOI | MR | Zbl

[10] Ivanov D. N., “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | Zbl

[11] Ivanov D. N., “Ortogonalnye razlozheniya prostykh algebr Li tipa $A_{p^n-1}$ i izotropnye rassloeniya”, UMN, 42:4 (1987), 141–142 | Zbl

[12] Kantor W. M., “Spreads, translation planes and Kerdock sets. I”, SIAM J. Algebra Disc. Methods, 1982, no. 2, 151–165 | DOI | MR | Zbl

[13] Kantor W. M., “Spreads, translation planes and Kerdock sets. II”, SIAM J. Algebra Disc. Methods, 1982, no. 3, 308–318 | DOI | MR | Zbl

[14] Kantor W. M., “Expanded, sliced and spread spreads”, Finite geometries, Proc. Conf. Washington State Univ. (Pullman, 1981), Lecture Notes in Pure and Appl. Math., 82, Marcel Dekker, Inc., New York, 1983, 251–261 | MR

[15] Kholl M., Teoriya grupp, IL, M., 1962

[16] Gleason A. M., “Finite Fano planes”, Amer. J. Math., 78 (1956), 797–807 | DOI | MR | Zbl

[17] Suprunenko D. A., Gruppy matrits, Nauka, M., 1979 | MR

[18] Isaacs I. M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl