Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1545-1556

Voir la notice de l'article provenant de la source Math-Net.Ru

An expression is found for the Gaussian torsion of a surface $F^2$ in 4-dimensional Euclidean space $E^2$ defined implicitly by a system of two equations. An application of this formula for the intersection of two quadrics is considered as an example.
@article{SM_2004_195_11_a0,
     author = {Yu. A. Aminov and M. G. Szajewska},
     title = {Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {1545--1556},
     publisher = {mathdoc},
     volume = {195},
     number = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
AU  - M. G. Szajewska
TI  - Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1545
EP  - 1556
VL  - 195
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/
LA  - en
ID  - SM_2004_195_11_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%A M. G. Szajewska
%T Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space
%J Sbornik. Mathematics
%D 2004
%P 1545-1556
%V 195
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/
%G en
%F SM_2004_195_11_a0
Yu. A. Aminov; M. G. Szajewska. Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1545-1556. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/