Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space
Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1545-1556
Cet article a éte moissonné depuis la source Math-Net.Ru
An expression is found for the Gaussian torsion of a surface $F^2$ in 4-dimensional Euclidean space $E^2$ defined implicitly by a system of two equations. An application of this formula for the intersection of two quadrics is considered as an example.
@article{SM_2004_195_11_a0,
author = {Yu. A. Aminov and M. G. Szajewska},
title = {Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional {Euclidean} space},
journal = {Sbornik. Mathematics},
pages = {1545--1556},
year = {2004},
volume = {195},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/}
}
TY - JOUR AU - Yu. A. Aminov AU - M. G. Szajewska TI - Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space JO - Sbornik. Mathematics PY - 2004 SP - 1545 EP - 1556 VL - 195 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/ LA - en ID - SM_2004_195_11_a0 ER -
Yu. A. Aminov; M. G. Szajewska. Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space. Sbornik. Mathematics, Tome 195 (2004) no. 11, pp. 1545-1556. http://geodesic.mathdoc.fr/item/SM_2004_195_11_a0/
[1] Aminov Yu. A., Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002 | Zbl
[2] Aminov Yu. A., “Vyrazhenie tenzora Rimana podmnogoobraziya evklidova prostranstva, zadannogo sistemoi uravnenii”, Matem. zametki, 66:1 (1999), 3–7 | MR | Zbl
[3] Aminov Yu. A., “Vyrazhenie tenzora Rimana podmnogoobraziya rimanova prostranstva, zadannogo sistemoi uravnenii”, Matem. zametki, 72:5 (2002), 643–648 | MR | Zbl
[4] Aminov Yu. A., “Pismo v redaktsiyu”, Matem. zametki, 74:5 (2003), 800 | MR