Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions on $\mathbb R^n$
Sbornik. Mathematics, Tome 195 (2004) no. 10, pp. 1477-1501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dual of the space of infinitely smooth functions on $\mathbb R^n$ with partial derivatives satisfying certain weighted estimates is described in terms of the Fourier–Laplace transformation. An integral representation is obtained for the solutions of a homogeneous linear partial differential equation with constant coefficients that belong to this space.
@article{SM_2004_195_10_a3,
     author = {I. Kh. Musin},
     title = {Fourier{\textendash}Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {1477--1501},
     year = {2004},
     volume = {195},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions on $\mathbb R^n$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1477
EP  - 1501
VL  - 195
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/
LA  - en
ID  - SM_2004_195_10_a3
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions on $\mathbb R^n$
%J Sbornik. Mathematics
%D 2004
%P 1477-1501
%V 195
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/
%G en
%F SM_2004_195_10_a3
I. Kh. Musin. Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions on $\mathbb R^n$. Sbornik. Mathematics, Tome 195 (2004) no. 10, pp. 1477-1501. http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/

[1] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1966

[2] Mandelbroit S., Primykayuschie ryady, regulyarizatsiya posledovatelnostei, primeneniya, IL, M., 1955

[3] Musin I. Kh., “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii”, Matem. sb., 191:10 (2000), 57–86 | MR | Zbl

[4] Taylor B. A., “Analytically uniform spaces of infinitely differentiable functions”, Comm. Pure Appl. Math., 24:1 (1971), 39–51 | DOI | MR | Zbl

[5] Yulmukhametov R. S., “Tselye funktsii mnogikh peremennykh s zadannym povedeniem v beskonechnosti”, Izv. RAN. Ser. matem., 60:4 (1996), 205–224 | MR | Zbl

[6] Eskin G. I., “Obobschenie teoremy Paleya–Vinera–Shvartsa”, UMN, 16:1 (1961), 185–188 | MR | Zbl

[7] Vladimirov V. S., “Funktsii, golomorfnye v trubchatykh konusakh”, Izv. AN SSSR. Ser. matem., 27:1 (1963), 75–100 | Zbl

[8] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[9] Popenov S. V., “Ob odnom vesovom prostranstve tselykh funktsii”, Issledovaniya po teorii approksimatsii funktsii, BFAN SSSR, Ufa, 1986, 89–96 | MR

[10] Hansen S., “Localizable analytically uniform spaces and the fundamental principle”, Trans. Amer. Math. Soc., 264:1 (1981), 235–250 | DOI | MR | Zbl

[11] Ehrenpreis L., Fourier analysis in several complex variables, Wiley-Interscience Publ., New York, 1970 | MR | Zbl

[12] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1971 | MR | Zbl

[13] Berenstein K., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111 | MR

[14] Hansen S., “On the “fundamental principle” of L. Ehrenpreis”, Partial differential equations, Banach Center Publ., 10, eds. B. Bojarski, PWN-Polish Scientific Publishers, Warsaw, 1983, 185–201 | MR

[15] Zharinov V. V., “Kompaktnye semeistva LVP i prostranstva $FS$ i $DFS$”, UMN, 34:4 (1979), 97–131 | MR | Zbl

[16] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77 | MR

[17] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 264:4 (1982), 827–830 | MR | Zbl

[18] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[20] Robertson A. P., Robertson V. P., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[21] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[22] Shabat B. V., Vvedenie v kompleksnyi analiz. Chast II. Funktsii neskolkikh peremennykh, Nauka, M., 1985 | MR