Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 195 (2004) no. 10, pp. 1477-1501
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The dual of the space of infinitely smooth functions on $\mathbb R^n$ with partial derivatives satisfying certain weighted estimates is described in terms of the Fourier–Laplace transformation. An integral representation is obtained for the solutions of a homogeneous linear partial differential equation with constant coefficients that belong to this space.
			
            
            
            
          
        
      @article{SM_2004_195_10_a3,
     author = {I. Kh. Musin},
     title = {Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {1477--1501},
     publisher = {mathdoc},
     volume = {195},
     number = {10},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/}
}
                      
                      
                    TY - JOUR AU - I. Kh. Musin TI - Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$ JO - Sbornik. Mathematics PY - 2004 SP - 1477 EP - 1501 VL - 195 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/ LA - en ID - SM_2004_195_10_a3 ER -
%0 Journal Article %A I. Kh. Musin %T Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$ %J Sbornik. Mathematics %D 2004 %P 1477-1501 %V 195 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/ %G en %F SM_2004_195_10_a3
I. Kh. Musin. Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$. Sbornik. Mathematics, Tome 195 (2004) no. 10, pp. 1477-1501. http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/
