Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$
Sbornik. Mathematics, Tome 195 (2004) no. 10, pp. 1477-1501

Voir la notice de l'article provenant de la source Math-Net.Ru

The dual of the space of infinitely smooth functions on $\mathbb R^n$ with partial derivatives satisfying certain weighted estimates is described in terms of the Fourier–Laplace transformation. An integral representation is obtained for the solutions of a homogeneous linear partial differential equation with constant coefficients that belong to this space.
@article{SM_2004_195_10_a3,
     author = {I. Kh. Musin},
     title = {Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {1477--1501},
     publisher = {mathdoc},
     volume = {195},
     number = {10},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$
JO  - Sbornik. Mathematics
PY  - 2004
SP  - 1477
EP  - 1501
VL  - 195
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/
LA  - en
ID  - SM_2004_195_10_a3
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$
%J Sbornik. Mathematics
%D 2004
%P 1477-1501
%V 195
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/
%G en
%F SM_2004_195_10_a3
I. Kh. Musin. Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions on~$\mathbb R^n$. Sbornik. Mathematics, Tome 195 (2004) no. 10, pp. 1477-1501. http://geodesic.mathdoc.fr/item/SM_2004_195_10_a3/