On solutions of an evolution control system depending on parameters
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1383-1409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control system governed by a non-linear first-order evolution equation with mixed non-convex control constraints is examined. The system depends on parameters entering all its data, including the non-linear evolution operator and the control constraints. The system with convexified control constraints is also considered. The general concept of $G$-convergence of operators is used for the proof of the existence of selectors continuously dependent on the parameters with values in the solution set of the original system; a continuous version of the selector relaxation theorem is also proved, which concerns the approximation of the continuous solution selectors with convexified constraints by continuous solution selectors of the original system. An example of a parabolic control system is discussed.
@article{SM_2003_194_9_a4,
     author = {A. A. Tolstonogov},
     title = {On solutions of an~evolution control system depending on parameters},
     journal = {Sbornik. Mathematics},
     pages = {1383--1409},
     year = {2003},
     volume = {194},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - On solutions of an evolution control system depending on parameters
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1383
EP  - 1409
VL  - 194
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/
LA  - en
ID  - SM_2003_194_9_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T On solutions of an evolution control system depending on parameters
%J Sbornik. Mathematics
%D 2003
%P 1383-1409
%V 194
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/
%G en
%F SM_2003_194_9_a4
A. A. Tolstonogov. On solutions of an evolution control system depending on parameters. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1383-1409. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/

[1] Repovs D., Semenov P. V., Continuous selections of multivalued mappings, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl

[2] Ahmed N. U., Optimization and identification of systems governed by evolution equations on Banach space, Longman Scientific Tecnical, Harlow; John Wiley Songs, New York, 1988 | MR

[3] Tolstonogov A. A., Differential inclusions in a Banach space, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[4] De Blasi F. S., Pianigiani G., Staicu V., “Topological properties of nonconvex differential inclusions of evolution type”, Nonlinear Anal., 24 (1995), 711–720 | DOI | MR | Zbl

[5] De Blasi F. S., Pianigiani G., Staicu V., “On the solution sets of some nonconvex hyperbolic differential inclusions”, Czechoslovak Math. J., 120 (1995), 107–116 | MR

[6] Tolstonogov A. A., “Continuous selectors of fixed point sets of multifunctions with decomposable values”, Set-Valued Anal., 6 (1998), 129–147 | DOI | MR | Zbl

[7] Tolstonogov A. A., “$L_p$-nepreryvnye selektory nepodvizhnykh tochek mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami. III. Prilozheniya”, Sib. matem. zhurn., 40:6 (1999), 1380–1396 | MR | Zbl

[8] Fryskowski A., Rzezuchowski T., “Continuous version of Filippov–Wazewski relaxation theorem”, J. Differential Equations, 94 (1991), 254–265 | DOI | MR

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan., “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[10] Zhikov V. V., Kozlov S. M., Oleinik O. A., “O $G$-skhodimosti parabolicheskikh operatorov”, UMN, 36:1 (1981), 11–58 | MR

[11] Kolpakov A. G., “$G$-skhodimost odnogo klassa evolyutsionnykh operatorov”, Sib. matem. zhurn., 29:2 (1988), 90–104 | MR | Zbl

[12] Tolstonogov A. A., “$L_p$-nepreryvnye selektory nepodvizhnykh tochek mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami. I. Teoremy suschestvovaniya”, Sib. matem. zhurn., 40:3 (1999), 695–709 | MR | Zbl

[13] Tolstonogov A. A., “$L_p$-nepreryvnye selektory nepodvizhnykh tochek mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami. II. Teoremy relaksatsii”, Sib. matem. zhurn., 40:5 (1999), 1167–1181 | MR | Zbl

[14] Kuratovskii K., Topologiya, t. 2, Mir, M., 1965

[15] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[16] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[17] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[18] Papageorgiou N. S., “On the “bang-bang” principle for nonlinear evolution inclusions”, Dynam. Systems Appl., 2 (1993), 61–74 | MR | Zbl

[19] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl

[20] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[21] Brezis H., Operateurs maximaux monotones, North Holland, Amsterdam, 1973

[22] Tolstonogov A. A., “Ekstremalnye selektory mnogoznachnykh otobrazhenii i printsip “beng-beng” dlya evolyutsionnykh vklyuchenii”, Dokl. AN SSSR, 317:3 (1991), 589–593 | MR | Zbl

[23] Sokolowski J., “Optimal control in coefficients for weak variotional problems in Hilbert space”, Appl. Math. Optim., 7 (1981), 283–293 | DOI | MR | Zbl

[24] Tolstonogov A. A., “Svoistva mnozhestva dopustimykh par “traektoriya-upravlenie” evolyutsionnykh upravlyaemykh sistem pervogo poryadka”, Izv. RAN. Ser. matem., 65:3 (2001), 201–224 | MR | Zbl