On solutions of an~evolution control system depending on parameters
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1383-1409

Voir la notice de l'article provenant de la source Math-Net.Ru

A control system governed by a non-linear first-order evolution equation with mixed non-convex control constraints is examined. The system depends on parameters entering all its data, including the non-linear evolution operator and the control constraints. The system with convexified control constraints is also considered. The general concept of $G$-convergence of operators is used for the proof of the existence of selectors continuously dependent on the parameters with values in the solution set of the original system; a continuous version of the selector relaxation theorem is also proved, which concerns the approximation of the continuous solution selectors with convexified constraints by continuous solution selectors of the original system. An example of a parabolic control system is discussed.
@article{SM_2003_194_9_a4,
     author = {A. A. Tolstonogov},
     title = {On solutions of an~evolution control system depending on parameters},
     journal = {Sbornik. Mathematics},
     pages = {1383--1409},
     publisher = {mathdoc},
     volume = {194},
     number = {9},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - On solutions of an~evolution control system depending on parameters
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1383
EP  - 1409
VL  - 194
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/
LA  - en
ID  - SM_2003_194_9_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T On solutions of an~evolution control system depending on parameters
%J Sbornik. Mathematics
%D 2003
%P 1383-1409
%V 194
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/
%G en
%F SM_2003_194_9_a4
A. A. Tolstonogov. On solutions of an~evolution control system depending on parameters. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1383-1409. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a4/