@article{SM_2003_194_9_a2,
author = {Yu. L. Sachkov},
title = {Exponential map in the~generalized {Dido} problem},
journal = {Sbornik. Mathematics},
pages = {1331--1359},
year = {2003},
volume = {194},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a2/}
}
Yu. L. Sachkov. Exponential map in the generalized Dido problem. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1331-1359. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a2/
[1] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl
[2] Agrachev A. A., Sarychev A. A., “Filtratsii algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, Dokl. AN SSSR, 295:4 (1987), 777–781 | MR | Zbl
[3] Sachkov Yu. L., “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl
[4] Anzaldo-Menezes A., Monroy-Pérez F., “Charges in magnetic fields and sub-Riemannian geodesics”, Contemporary trends in nonlinear geometric control theory and its applications, World Scientific, Singapore, 2002, 183–202 | MR
[5] Li Z., Canny J., “Motion of two rigid bodies with rolling constraint”, IEEE Trans. Robot. Automat. (1), 6 (1990), 62–72 | DOI
[6] Agrachev A. A., Sachkov Yu. L., “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38-th IEEE Conference on Decision and Control (Phoenix, Arizona, USA, December 7–10, 1999), 1, 431–435
[7] Marigo A., Bicchi A., “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control, Summer Research Institute on Differential Geometry and Control (Univ. Colorado, Boulder, June 29–July 19, 1997), Proc. Sympos. Pure Math., 64, eds. G. Ferreyra et al., Amer. Math. Soc., Providence, RI, 1999, 241–256 | MR | Zbl
[8] Laumond J. P., Nonholonomic motion planning for mobile robots, Preprint No 98211, LAAS-CNRS, Toulouse, France, 1998
[9] Brockett R., Dai L., “Non-holonomic kinematics and the role of elliptic functions in constructive controllability”, Nonholonomic motion planning, eds. Z. Li, J. Canny, Kluwer Acad. Publ., Boston, 1993, 1–21
[10] Krener A. J., Nikitin S., “Generalized isoperimetric problem”, J. Math. Systems, Estimat. Control., 7:3 (1997), 1–15 | MR
[11] Brockett R., “Control theory and singular Riemannian geometry”, New directions in applied mathematics, eds. P. Hilton, G. Young, Springer-Verlag, New York, 1981, 11–27 | MR
[12] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 16, VINITI, M., 1987, 5–85 | MR
[13] Agrachev A. A., “Exponential mappings for contact sub-Riemannian structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358 | DOI | MR | Zbl
[14] El-Alaoui C., Gauthier J. P., Kupka I., “Small sub-Riemannian balls on $\mathbb R^3$”, J. Dynam. Control Systems, 2:3 (1996), 359–421 | DOI | MR | Zbl
[15] Jurdjevic V., Geometric control theory, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[16] Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Preprint SISSA 77/2002/M, SISSA, Trieste, Italy, 2002 | MR
[17] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[18] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl
[19] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, URSS, M., 2002
[20] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1977