Exponential map in the generalized Dido problem
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1331-1359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalized Dido problem is stated as an optimal control problem in 5-dimensional space with 2-dimensional control and quadratic cost functional, which is a nilpotent sub-Riemannian problem with the growth vector (2, 3, 5). Extremals of this problem are parametrized by Jacobian elliptic functions.
@article{SM_2003_194_9_a2,
     author = {Yu. L. Sachkov},
     title = {Exponential map in the~generalized {Dido} problem},
     journal = {Sbornik. Mathematics},
     pages = {1331--1359},
     year = {2003},
     volume = {194},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a2/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Exponential map in the generalized Dido problem
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1331
EP  - 1359
VL  - 194
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a2/
LA  - en
ID  - SM_2003_194_9_a2
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Exponential map in the generalized Dido problem
%J Sbornik. Mathematics
%D 2003
%P 1331-1359
%V 194
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a2/
%G en
%F SM_2003_194_9_a2
Yu. L. Sachkov. Exponential map in the generalized Dido problem. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1331-1359. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a2/

[1] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl

[2] Agrachev A. A., Sarychev A. A., “Filtratsii algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, Dokl. AN SSSR, 295:4 (1987), 777–781 | MR | Zbl

[3] Sachkov Yu. L., “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[4] Anzaldo-Menezes A., Monroy-Pérez F., “Charges in magnetic fields and sub-Riemannian geodesics”, Contemporary trends in nonlinear geometric control theory and its applications, World Scientific, Singapore, 2002, 183–202 | MR

[5] Li Z., Canny J., “Motion of two rigid bodies with rolling constraint”, IEEE Trans. Robot. Automat. (1), 6 (1990), 62–72 | DOI

[6] Agrachev A. A., Sachkov Yu. L., “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38-th IEEE Conference on Decision and Control (Phoenix, Arizona, USA, December 7–10, 1999), 1, 431–435

[7] Marigo A., Bicchi A., “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control, Summer Research Institute on Differential Geometry and Control (Univ. Colorado, Boulder, June 29–July 19, 1997), Proc. Sympos. Pure Math., 64, eds. G. Ferreyra et al., Amer. Math. Soc., Providence, RI, 1999, 241–256 | MR | Zbl

[8] Laumond J. P., Nonholonomic motion planning for mobile robots, Preprint No 98211, LAAS-CNRS, Toulouse, France, 1998

[9] Brockett R., Dai L., “Non-holonomic kinematics and the role of elliptic functions in constructive controllability”, Nonholonomic motion planning, eds. Z. Li, J. Canny, Kluwer Acad. Publ., Boston, 1993, 1–21

[10] Krener A. J., Nikitin S., “Generalized isoperimetric problem”, J. Math. Systems, Estimat. Control., 7:3 (1997), 1–15 | MR

[11] Brockett R., “Control theory and singular Riemannian geometry”, New directions in applied mathematics, eds. P. Hilton, G. Young, Springer-Verlag, New York, 1981, 11–27 | MR

[12] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 16, VINITI, M., 1987, 5–85 | MR

[13] Agrachev A. A., “Exponential mappings for contact sub-Riemannian structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358 | DOI | MR | Zbl

[14] El-Alaoui C., Gauthier J. P., Kupka I., “Small sub-Riemannian balls on $\mathbb R^3$”, J. Dynam. Control Systems, 2:3 (1996), 359–421 | DOI | MR | Zbl

[15] Jurdjevic V., Geometric control theory, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[16] Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Preprint SISSA 77/2002/M, SISSA, Trieste, Italy, 2002 | MR

[17] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[18] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl

[19] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, URSS, M., 2002

[20] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1977