Vassiliev invariants classify plane curves and doodles
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1301-1330

Voir la notice de l'article provenant de la source Math-Net.Ru

An ornament is a system of oriented closed curves in a plane or some other 2-surface no three of which intersect at one point. Similarly, a doodle is a collection of oriented closed curves without triple points or degenerations. Homotopy invariants of ornaments and doodles are natural analogues of homotopy and isotopy invariants of links, respectively. The Vassiliev theory of finite-order invariants of ornaments and the constructions of certain series of such invariants can be applied to doodles. It is proved that these finite-order invariants classify doodles. Similar finite-order invariants of connected oriented closed curves classify doodles up to an isotopy of the ambient plane.
@article{SM_2003_194_9_a1,
     author = {A. B. Merkov},
     title = {Vassiliev invariants classify plane curves and  doodles},
     journal = {Sbornik. Mathematics},
     pages = {1301--1330},
     publisher = {mathdoc},
     volume = {194},
     number = {9},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/}
}
TY  - JOUR
AU  - A. B. Merkov
TI  - Vassiliev invariants classify plane curves and  doodles
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1301
EP  - 1330
VL  - 194
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/
LA  - en
ID  - SM_2003_194_9_a1
ER  - 
%0 Journal Article
%A A. B. Merkov
%T Vassiliev invariants classify plane curves and  doodles
%J Sbornik. Mathematics
%D 2003
%P 1301-1330
%V 194
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/
%G en
%F SM_2003_194_9_a1
A. B. Merkov. Vassiliev invariants classify plane curves and  doodles. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1301-1330. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/