@article{SM_2003_194_9_a1,
author = {A. B. Merkov},
title = {Vassiliev invariants classify plane curves and doodles},
journal = {Sbornik. Mathematics},
pages = {1301--1330},
year = {2003},
volume = {194},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/}
}
A. B. Merkov. Vassiliev invariants classify plane curves and doodles. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1301-1330. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/
[1] Vassiliev V. A., “Complexes of connected graphs”, The Gel'fand's mathematical seminars 1990–92, eds. L. Corwin at all, Birkhäuser, Basel, 1993, 223–235 | MR | Zbl
[2] Vassiliev V. A., “Invariants of ornaments”, Singularities and bifurcations, Adv. Soviet Math., 21, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1994, 225–261 | MR
[3] Fenn R., P.Taylor P., “Introducing doodles”, Topology of low-dimensional manifolds, Lecture Notes in Math., 722, ed. R. Fenn, Springer-Verlag, New York, 1977, 37–43 | MR
[4] Khovanov M., “Doodle groups”, Trans. Amer. Math. Soc., 349:6 (1997), 2297–2315 | DOI | MR | Zbl
[5] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and bifurcations, Adv. Soviet Math., 21, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1994, 33–91 | MR | Zbl
[6] Bar-Natan D., “Vassiliev homotopy string link invariants”, J. Knot Theory Ramifications., 4:1 (1995), 13–32 | DOI | MR | Zbl
[7] Merkov A. B., “Vassiliev invariants classify flat braids”, Amer. Math. Soc. Transl. Ser. 2, 190 (1999), 83–102 | MR | Zbl
[8] Mellor B., “Finite type link homotopy invariants”, J. Knot Theory Ramifications, 8:6 (1999), 773–787 | DOI | MR | Zbl
[9] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Int. Math. Res. Notices, 1994, no. 11, 445–453 | DOI | MR | Zbl
[10] Polyak M., Invariants of plane curves via Gauss diagrams, Preprint MPI/116-94, Max-Plank-Institut, Bonn, 1994
[11] Merkov A. B., “Finite-order invariants of ornaments”, J. Math. Sci. (New York), 90:4 (1998), 2215–2273 | DOI | MR | Zbl
[12] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications (revised edition), Transl. Math. Monog., 98, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[13] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR
[14] Kontsevich M., “Vassiliev's knot invariants”, I. M. Gelfand seminar. Part 2: Papers of the Gelfand seminar in functional analysis held at Moscow University (Russia, September 1993), Adv. Soviet Math., 16 (2), eds. S. Gelfand et al., Amer. Math. Soc., Providence, RI, 1993, 137–150 | MR | Zbl
[15] Whitney H., “On regular closed curves in the plane”, Compositio Math., 4 (1937), 276–284 | MR | Zbl