Vassiliev invariants classify plane curves and doodles
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1301-1330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An ornament is a system of oriented closed curves in a plane or some other 2-surface no three of which intersect at one point. Similarly, a doodle is a collection of oriented closed curves without triple points or degenerations. Homotopy invariants of ornaments and doodles are natural analogues of homotopy and isotopy invariants of links, respectively. The Vassiliev theory of finite-order invariants of ornaments and the constructions of certain series of such invariants can be applied to doodles. It is proved that these finite-order invariants classify doodles. Similar finite-order invariants of connected oriented closed curves classify doodles up to an isotopy of the ambient plane.
@article{SM_2003_194_9_a1,
     author = {A. B. Merkov},
     title = {Vassiliev invariants classify plane curves and doodles},
     journal = {Sbornik. Mathematics},
     pages = {1301--1330},
     year = {2003},
     volume = {194},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/}
}
TY  - JOUR
AU  - A. B. Merkov
TI  - Vassiliev invariants classify plane curves and doodles
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1301
EP  - 1330
VL  - 194
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/
LA  - en
ID  - SM_2003_194_9_a1
ER  - 
%0 Journal Article
%A A. B. Merkov
%T Vassiliev invariants classify plane curves and doodles
%J Sbornik. Mathematics
%D 2003
%P 1301-1330
%V 194
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/
%G en
%F SM_2003_194_9_a1
A. B. Merkov. Vassiliev invariants classify plane curves and doodles. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1301-1330. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a1/

[1] Vassiliev V. A., “Complexes of connected graphs”, The Gel'fand's mathematical seminars 1990–92, eds. L. Corwin at all, Birkhäuser, Basel, 1993, 223–235 | MR | Zbl

[2] Vassiliev V. A., “Invariants of ornaments”, Singularities and bifurcations, Adv. Soviet Math., 21, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1994, 225–261 | MR

[3] Fenn R., P.Taylor P., “Introducing doodles”, Topology of low-dimensional manifolds, Lecture Notes in Math., 722, ed. R. Fenn, Springer-Verlag, New York, 1977, 37–43 | MR

[4] Khovanov M., “Doodle groups”, Trans. Amer. Math. Soc., 349:6 (1997), 2297–2315 | DOI | MR | Zbl

[5] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and bifurcations, Adv. Soviet Math., 21, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1994, 33–91 | MR | Zbl

[6] Bar-Natan D., “Vassiliev homotopy string link invariants”, J. Knot Theory Ramifications., 4:1 (1995), 13–32 | DOI | MR | Zbl

[7] Merkov A. B., “Vassiliev invariants classify flat braids”, Amer. Math. Soc. Transl. Ser. 2, 190 (1999), 83–102 | MR | Zbl

[8] Mellor B., “Finite type link homotopy invariants”, J. Knot Theory Ramifications, 8:6 (1999), 773–787 | DOI | MR | Zbl

[9] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Int. Math. Res. Notices, 1994, no. 11, 445–453 | DOI | MR | Zbl

[10] Polyak M., Invariants of plane curves via Gauss diagrams, Preprint MPI/116-94, Max-Plank-Institut, Bonn, 1994

[11] Merkov A. B., “Finite-order invariants of ornaments”, J. Math. Sci. (New York), 90:4 (1998), 2215–2273 | DOI | MR | Zbl

[12] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications (revised edition), Transl. Math. Monog., 98, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[13] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[14] Kontsevich M., “Vassiliev's knot invariants”, I. M. Gelfand seminar. Part 2: Papers of the Gelfand seminar in functional analysis held at Moscow University (Russia, September 1993), Adv. Soviet Math., 16 (2), eds. S. Gelfand et al., Amer. Math. Soc., Providence, RI, 1993, 137–150 | MR | Zbl

[15] Whitney H., “On regular closed curves in the plane”, Compositio Math., 4 (1937), 276–284 | MR | Zbl