Approximation of trajectories lying on a~global attractor of a~hyperbolic equation with exterior force rapidly oscillating in time
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1273-1300

Voir la notice de l'article provenant de la source Math-Net.Ru

A quasilinear dissipative wave equation is considered for periodic boundary conditions with exterior force $g(x,t/\varepsilon)$ rapidly oscillating in $t$. It is assumed in addition that, as $\varepsilon\to0+$, the function $g(x,t/\varepsilon)$ converges in the weak sense (in $L_{2,w}^{\mathrm{loc}}(\mathbb R,L_2(\mathbb T^n))$ to a function $\overline g(x)$ and the averaged wave equation (with exterior force $\overline g(x)$ has only finitely many stationary points $\{z_i(x),\,i= 1,\dots,N\}$, each of them hyperbolic. It is proved that the global attractor $\mathscr A_\varepsilon$ of the original equation deviates in the energy norm from the global attractor $\mathscr A_0$ of the averaged equation by a quantity $C\varepsilon^\rho$, where $\rho$ is described by an explicit formula. It is also shown that each piece of a trajectory $u^\varepsilon(t)$ of the original equation lying on $\mathscr A_\varepsilon$ that corresponds to an interval of time-length $C\log(1/\varepsilon)$ can be approximated to within $C_1\varepsilon^{\rho_1}$ by means of finitely many pieces of trajectories lying on unstable manifolds $M^u(z_i)$ of the averaged equation, where an explicit expression for $\rho_1$ is provided.
@article{SM_2003_194_9_a0,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Approximation of trajectories lying on a~global attractor of a~hyperbolic equation with exterior force rapidly oscillating in time},
     journal = {Sbornik. Mathematics},
     pages = {1273--1300},
     publisher = {mathdoc},
     volume = {194},
     number = {9},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Approximation of trajectories lying on a~global attractor of a~hyperbolic equation with exterior force rapidly oscillating in time
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1273
EP  - 1300
VL  - 194
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/
LA  - en
ID  - SM_2003_194_9_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Approximation of trajectories lying on a~global attractor of a~hyperbolic equation with exterior force rapidly oscillating in time
%J Sbornik. Mathematics
%D 2003
%P 1273-1300
%V 194
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/
%G en
%F SM_2003_194_9_a0
M. I. Vishik; V. V. Chepyzhov. Approximation of trajectories lying on a~global attractor of a~hyperbolic equation with exterior force rapidly oscillating in time. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1273-1300. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/