Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time
Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1273-1300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quasilinear dissipative wave equation is considered for periodic boundary conditions with exterior force $g(x,t/\varepsilon)$ rapidly oscillating in $t$. It is assumed in addition that, as $\varepsilon\to0+$, the function $g(x,t/\varepsilon)$ converges in the weak sense (in $L_{2,w}^{\mathrm{loc}}(\mathbb R,L_2(\mathbb T^n))$ to a function $\overline g(x)$ and the averaged wave equation (with exterior force $\overline g(x)$ has only finitely many stationary points $\{z_i(x),\,i= 1,\dots,N\}$, each of them hyperbolic. It is proved that the global attractor $\mathscr A_\varepsilon$ of the original equation deviates in the energy norm from the global attractor $\mathscr A_0$ of the averaged equation by a quantity $C\varepsilon^\rho$, where $\rho$ is described by an explicit formula. It is also shown that each piece of a trajectory $u^\varepsilon(t)$ of the original equation lying on $\mathscr A_\varepsilon$ that corresponds to an interval of time-length $C\log(1/\varepsilon)$ can be approximated to within $C_1\varepsilon^{\rho_1}$ by means of finitely many pieces of trajectories lying on unstable manifolds $M^u(z_i)$ of the averaged equation, where an explicit expression for $\rho_1$ is provided.
@article{SM_2003_194_9_a0,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Approximation of trajectories lying on a~global attractor of a~hyperbolic equation with exterior force rapidly oscillating in time},
     journal = {Sbornik. Mathematics},
     pages = {1273--1300},
     year = {2003},
     volume = {194},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1273
EP  - 1300
VL  - 194
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/
LA  - en
ID  - SM_2003_194_9_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time
%J Sbornik. Mathematics
%D 2003
%P 1273-1300
%V 194
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/
%G en
%F SM_2003_194_9_a0
M. I. Vishik; V. V. Chepyzhov. Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time. Sbornik. Mathematics, Tome 194 (2003) no. 9, pp. 1273-1300. http://geodesic.mathdoc.fr/item/SM_2003_194_9_a0/

[1] Chepyzhov V. V., Vishik M. I., Attractors for equations of mathematical physics, Amer. Math. Soc. Collog. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[2] Temam R., Infinite dimensional dynamical systems in mechanics and physics, Appl. Math. Ser., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[3] Hale J., Asymptotic behaviour of dissipative systems, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[4] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[5] Raugel G., “Global attractors in partial differential equations”, Handbook of Dynamical Systems 2, ed. B. Fiedler, North-Holland, Amsterdam, 2001 | MR

[6] Chepyzhov V. V., Vishik M. I., Wendland W., On non-autonomous sine-Gordon type equations with a simple global attractor, Preprint No 2003/01, Stuttgart Univ., Stuttgart, 2003

[7] Vishik M. I., Fidler B., “Kolichestvennoe usrednenie globalnykh attraktorov giperbolicheskikh volnovykh uravnenii s bystro ostsilliruyuschimi koeffitsientami”, UMN, 57:4 (2002), 75–94 | MR | Zbl

[8] Ilin A. A., “Usrednenie dissipativnykh sistem s bystro ostsilliruyuschimi pravymi chastyami”, Matem. sb., 187:5 (1996), 15–58 | MR | Zbl

[9] Vishik M. I., Chepyzhov V. V., “Usrednenie traektornykh attraktorov evolyutsionnykh uravnenii s bystro ostsilliruyuschimi chlenami”, Matem. sb., 192:1 (2001), 13–50 | MR | Zbl

[10] Haraux A., “Two remarks on dissipative hyperbolic problems”, Nonlinear partial differential equations and their applications, Collège de France, vol. 7, Res. Notes Math., 122, eds. H. Brezis, J. L. Lions, Pitman, Boston, MA, 1985, 161–179 | MR

[11] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73:3 (1994), 279–333 | MR | Zbl

[12] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[13] Kassels J. W. S., An introduction to Diophantine approximations, Cambridge Univ. Press, Cambridge, 1957 | MR

[14] Fiedler B., Vishik M. I., Quantative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms, Preprint No A-18-2000, Free Univ. Berlin, Berlin, 2000 | MR