Surgery on triples of manifolds
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1251-1271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The surgery obstruction groups for a manifold pair were introduced by Wall for the study of the surgery problem on a manifold with a submanifold. These groups are closely related to the problem of splitting a homotopy equivalence along a submanifold and have been used in many geometric and topological applications. In the present paper the concept of surgery on a triple of manifolds is introduced and algebraic and geometric properties of the corresponding obstruction groups are described. It is then shown that these groups are closely related to the normal invariants and the classical splitting and surgery obstruction groups, respectively, of the manifold in question. In the particular case of one-sided submanifolds relations between the newly introduced groups and the surgery spectral sequence constructed by Hambleton and Kharshiladze are obtained.
@article{SM_2003_194_8_a6,
     author = {Yu. V. Muranov and D. Repov\v{s} and F. Spaggiari},
     title = {Surgery on triples of manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1251--1271},
     year = {2003},
     volume = {194},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - D. Repovš
AU  - F. Spaggiari
TI  - Surgery on triples of manifolds
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1251
EP  - 1271
VL  - 194
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/
LA  - en
ID  - SM_2003_194_8_a6
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A D. Repovš
%A F. Spaggiari
%T Surgery on triples of manifolds
%J Sbornik. Mathematics
%D 2003
%P 1251-1271
%V 194
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/
%G en
%F SM_2003_194_8_a6
Yu. V. Muranov; D. Repovš; F. Spaggiari. Surgery on triples of manifolds. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1251-1271. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/

[1] Ranicki A. A., Exact sequences in the algebraic theory of surgery, Princeton Univ. Press, Princeton, 1981 | MR | Zbl

[2] Ranicki A. A., Algebraic $L$-theory and topological manifolds, Cambridge Univ. Press, Cambridge, 1992 | MR

[3] Wall C. T. C., Surgery on compact manifolds, Amer. Math. Soc., Providence, R.I., 1999 | MR | Zbl

[4] Ranicki A. A., “The total surgery obstruction”, Lecture Notes in Math., 763, 1979, 275–316 | MR | Zbl

[5] Ferry S. C., Ranicki A. A., Rosenberg J. (Eds.), Novikov conjectures, index theorems and rigidity, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995 | MR

[6] Cavicchioli A., Muranov Yu. V., Repovš D., “Algebraic properties of decorated splitting obstruction groups”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 4 (2001), 647–675 | MR | Zbl

[7] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes in Math., 967, 1982, 101–131 | MR | Zbl

[8] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183:9 (1992), 3–14 | MR | Zbl

[9] Muranov Yu. V., “Zadacha rasschepleniya”, Trudy MIRAN, 212, 1996, 123–146 | MR | Zbl

[10] Akhmetev P. M., Muranov Yu. V., “Prepyatstviya k rasschepleniyu mnogoobrazii s beskonechnoi fundamentalnoi gruppoi”, Matem. zametki, 60 (1996), 163–175 | MR | Zbl

[11] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59 (1995), 107–132 | MR | Zbl

[12] Muranov Yu. V., Khemblton I., “Proektivnye gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, Matem. sb., 190:10 (1999), 65–86 | MR | Zbl

[13] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh 2-grupp”, Matem. sb., 181:8 (1990), 1061–1098 | MR | Zbl

[14] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl

[15] Ranicki A. A., “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39 (1987), 345–364 | MR | Zbl

[16] Ruini B., Spaggiari F., “On the computation of $L$-groups and natural maps”, Abh. Math. Sem. Univ. Hamburg, 72 (2002), 297–308 | DOI | MR | Zbl

[17] Browder W., Livesay G. R., “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc. (N.S.), 73 (1967), 242–245 | DOI | MR | Zbl

[18] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl

[19] Hambleton I., Pedersen E., Topological equivalences of linear representations for cyclic groups, MPI Preprint, 1997

[20] Jimenez R., Muranov Yu. V., Surgery transfer maps for triples of manifolds, Publications Preliminaries del Instituto de Matematicas-Cuernavaca, no. 721, 2002

[21] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl

[22] Maleshich I., Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k rasschepleniyu v korazmernosti 2”, Matem. zametki, 69:1 (2001), 52–73 | MR | Zbl

[23] Lück W., Ranicki A. A., “Surgery transfer”, Lecture Notes in Math., 1361, 1988, 167–246 | MR | Zbl

[24] Lück W., Ranicki A. A., “Surgery obstructions of fiber bundles”, J. Pure Appl. Algebra, 81 (1992), 139–189 | DOI | MR | Zbl

[25] Switzer R., Algebraic topology – homotopy and homology, Springer-Verlag, Berlin, 1975 | MR | Zbl