Surgery on triples of manifolds
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1251-1271

Voir la notice de l'article provenant de la source Math-Net.Ru

The surgery obstruction groups for a manifold pair were introduced by Wall for the study of the surgery problem on a manifold with a submanifold. These groups are closely related to the problem of splitting a homotopy equivalence along a submanifold and have been used in many geometric and topological applications. In the present paper the concept of surgery on a triple of manifolds is introduced and algebraic and geometric properties of the corresponding obstruction groups are described. It is then shown that these groups are closely related to the normal invariants and the classical splitting and surgery obstruction groups, respectively, of the manifold in question. In the particular case of one-sided submanifolds relations between the newly introduced groups and the surgery spectral sequence constructed by Hambleton and Kharshiladze are obtained.
@article{SM_2003_194_8_a6,
     author = {Yu. V. Muranov and D. Repov\v{s} and F. Spaggiari},
     title = {Surgery on triples of manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1251--1271},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - D. Repovš
AU  - F. Spaggiari
TI  - Surgery on triples of manifolds
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1251
EP  - 1271
VL  - 194
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/
LA  - en
ID  - SM_2003_194_8_a6
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A D. Repovš
%A F. Spaggiari
%T Surgery on triples of manifolds
%J Sbornik. Mathematics
%D 2003
%P 1251-1271
%V 194
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/
%G en
%F SM_2003_194_8_a6
Yu. V. Muranov; D. Repovš; F. Spaggiari. Surgery on triples of manifolds. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1251-1271. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a6/