@article{SM_2003_194_8_a5,
author = {I. V. Mykytyuk},
title = {Invariant hyperk\"ahler structures on the~cotangent bundles of},
journal = {Sbornik. Mathematics},
pages = {1225--1250},
year = {2003},
volume = {194},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/}
}
I. V. Mykytyuk. Invariant hyperkähler structures on the cotangent bundles of. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1225-1250. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/
[1] Burns D., “Some examples of the twistor construction”, Contributions to several complex variables, in honor of W. Stoll, eds. A. Howard, P. M. Wong, Vieweg, 1986, 51–67 | MR | Zbl
[2] Biquard O., “Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes”, Math. Ann., 304 (1996), 253–276 | DOI | MR | Zbl
[3] Dancer A., Szőke R., “Symmetric spaces, adapted complex structures and hyperkähler structures”, Quart. J. Math. Oxford Ser. (2), 48:2 (1997), 27–38 | DOI | MR | Zbl
[4] Biquard O., Gauduchon P., “Hyperkähler metrics on cotangent bundles of Hermitian symmetric spaces”, Geometry and physics, Lecture Notes in Pure and Appl. Math., 184, eds. J. Andersen et al., Dekker, New York, 1997, 287–298 | MR | Zbl
[5] Biquard O., Gauduchon P., “Géométrie hyperkählérienne des espaces Hermitiens symétriques complexifiés”, Sémin. Théor. Spectr. Géom., 16 (1998), 127–173 | MR | Zbl
[6] Mikityuk I. V., “Kelerovy struktury na kasatelnykh rassloeniyakh simmetricheskikh prostranstv ranga odin”, Matem. sb., 192:11 (2001), 93–122 | MR | Zbl
[7] Mykytyuk I. V., “Invariant Kähler structures on the cotangent bundle of compact symmetric spaces”, Nagoya Math. J., 169 (2003), 191–217 | MR | Zbl
[8] Obata M., “Affine connections on manifolds with almost complex, quaternion or Hermitian structure”, Japan J. Math. (N.S.), 26 (1956), 43–77 | MR
[9] Hitchin N. J., “Hyperkähler manifolds”, Seminaire Bourbaki, 748, Soc. Math. France, Paris, 1992, 137–166 | MR | Zbl
[10] Guillemin V., Sternberg S., “Geometric quantization and multiplicities of group representations”, Invent. Math., 67 (1982), 515–538 | DOI | MR | Zbl
[11] Goto M., Grosshans F., Semisimple Lie algebras, Lecture Notes in Pure and App. Math., 38, Dekker, New York, 1978 | MR | Zbl
[12] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978 | MR | Zbl
[13] Wolf J. A., “Fine structure of Hermitian symmetric spaces”, Symmetric spaces, eds. W. M. Boothby, G. L. Weiss, Dekker, New York, 1972, 271–357 | MR