Invariant hyperk\"ahler structures on the~cotangent bundles of
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1225-1250

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G/K$ be an irreducible Hermitian symmetric space of compact type with standard homogeneous complex structure. Then the real symplectic manifold $(T^*(G/K),\Omega)$ has the natural complex structure $J^-$. All $G$-invariant Kéhler structures $(J,\Omega)$ on $G$-invariant subdomains of $T^*(G/K)$ anticommuting with $J^-$ are constructed. Each hypercomplex structure of this kind, equipped with a suitable metric, defines a hyperkéhler structure. As an application, a new proof of the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.
@article{SM_2003_194_8_a5,
     author = {I. V. Mykytyuk},
     title = {Invariant hyperk\"ahler structures on the~cotangent bundles of},
     journal = {Sbornik. Mathematics},
     pages = {1225--1250},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Invariant hyperk\"ahler structures on the~cotangent bundles of
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1225
EP  - 1250
VL  - 194
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/
LA  - en
ID  - SM_2003_194_8_a5
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Invariant hyperk\"ahler structures on the~cotangent bundles of
%J Sbornik. Mathematics
%D 2003
%P 1225-1250
%V 194
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/
%G en
%F SM_2003_194_8_a5
I. V. Mykytyuk. Invariant hyperk\"ahler structures on the~cotangent bundles of. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1225-1250. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/