Invariant hyperk\"ahler structures on the~cotangent bundles of
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1225-1250
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let  $G/K$ be an irreducible Hermitian symmetric space of
compact type with standard homogeneous complex structure. Then the real symplectic manifold 
 $(T^*(G/K),\Omega)$ has the natural complex structure $J^-$. All $G$-invariant 
Kéhler structures  $(J,\Omega)$ on $G$-invariant subdomains of $T^*(G/K)$
anticommuting  with $J^-$ are constructed. Each  hypercomplex structure of this kind, equipped  with a suitable metric, defines a hyperkéhler structure. As an application, a new proof of
the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.
			
            
            
            
          
        
      @article{SM_2003_194_8_a5,
     author = {I. V. Mykytyuk},
     title = {Invariant hyperk\"ahler structures on the~cotangent bundles of},
     journal = {Sbornik. Mathematics},
     pages = {1225--1250},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/}
}
                      
                      
                    I. V. Mykytyuk. Invariant hyperk\"ahler structures on the~cotangent bundles of. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1225-1250. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a5/
