Approaches to the summability of divergent multidimensional integrals
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1137-1166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Under discussion are various approaches to the concept of summability (finding
the finite part – f.p. ) of divergent integrals with integrand represented as a product of two functions, one with a parameter-dependent  non-integrable singularity at one point of the integration and the other absolutely integrable. A study is made of summability methods which are based on the expansion of the absolutely integrable function  in
a Taylor series with centre at the singular point (f.p.), on the analytic continuation with respect to the parameter of the singularity (a.f.p.), and on integration by parts (f.p.p.). Formulae of  changes of variables in such integrals are presented.
			
            
            
            
          
        
      @article{SM_2003_194_8_a2,
     author = {G. M. Vainikko and I. K. Lifanov},
     title = {Approaches to the summability of divergent multidimensional integrals},
     journal = {Sbornik. Mathematics},
     pages = {1137--1166},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a2/}
}
                      
                      
                    G. M. Vainikko; I. K. Lifanov. Approaches to the summability of divergent multidimensional integrals. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1137-1166. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a2/
