On Sasakian hypersurfaces in 6-dimensional Hermitian
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1125-1136
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A criterion for the minimality of a Sasakian
hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is found. It is proved that the type number of  a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is  four or five. It is also proved that a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the Cayley algebra is minimal if and only if  it is ruled.
			
            
            
            
          
        
      @article{SM_2003_194_8_a1,
     author = {M. B. Banaru},
     title = {On {Sasakian} hypersurfaces in 6-dimensional {Hermitian}},
     journal = {Sbornik. Mathematics},
     pages = {1125--1136},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a1/}
}
                      
                      
                    M. B. Banaru. On Sasakian hypersurfaces in 6-dimensional Hermitian. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1125-1136. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a1/
