On Sasakian hypersurfaces in 6-dimensional Hermitian
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1125-1136

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the minimality of a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is found. It is proved that the type number of a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is four or five. It is also proved that a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the Cayley algebra is minimal if and only if it is ruled.
@article{SM_2003_194_8_a1,
     author = {M. B. Banaru},
     title = {On {Sasakian} hypersurfaces in 6-dimensional {Hermitian}},
     journal = {Sbornik. Mathematics},
     pages = {1125--1136},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a1/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - On Sasakian hypersurfaces in 6-dimensional Hermitian
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1125
EP  - 1136
VL  - 194
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_8_a1/
LA  - en
ID  - SM_2003_194_8_a1
ER  - 
%0 Journal Article
%A M. B. Banaru
%T On Sasakian hypersurfaces in 6-dimensional Hermitian
%J Sbornik. Mathematics
%D 2003
%P 1125-1136
%V 194
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_8_a1/
%G en
%F SM_2003_194_8_a1
M. B. Banaru. On Sasakian hypersurfaces in 6-dimensional Hermitian. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1125-1136. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a1/