Estimates of solutions of certain classes of second-order differential
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1113-1123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear second-order differential equations of the form $$ u''(t)+(B+iD)u'(t)+(T+iS)u(t)=0 $$ in a Hilbert space are studied. Under certain conditions on the (generally speaking, unbounded) operators $T$, $S$, $B$ and $D$ the correct solubility of the equation in the “energy” space is proved and best possible (in the general case) estimates of the solutions on the half-axis are obtained.
@article{SM_2003_194_8_a0,
     author = {N. V. Artamonov},
     title = {Estimates of solutions of certain classes of second-order differential},
     journal = {Sbornik. Mathematics},
     pages = {1113--1123},
     year = {2003},
     volume = {194},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a0/}
}
TY  - JOUR
AU  - N. V. Artamonov
TI  - Estimates of solutions of certain classes of second-order differential
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1113
EP  - 1123
VL  - 194
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_8_a0/
LA  - en
ID  - SM_2003_194_8_a0
ER  - 
%0 Journal Article
%A N. V. Artamonov
%T Estimates of solutions of certain classes of second-order differential
%J Sbornik. Mathematics
%D 2003
%P 1113-1123
%V 194
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2003_194_8_a0/
%G en
%F SM_2003_194_8_a0
N. V. Artamonov. Estimates of solutions of certain classes of second-order differential. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1113-1123. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a0/

[1] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., “Spektralnaya teoriya differentsialnykh operatorov”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 64, VINITI, M., 1989, 5–247 | MR

[2] Chen S., Triggiani R., “Proof of extensions of two conjecture on structure damping for elastic systems”, Pacific J. Math., 136:1 (1989), 15–55 | MR | Zbl

[3] Miloslavskii A. I., “O spektre neustoichivosti operatornogo puchka”, Matem. zametki, 49:4 (1991), 88–94 | MR | Zbl

[4] Shkalikov A. A., “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Trudy sem. im. I. G. Petrovskogo, no. 14, Izd-vo MGU, M., 1989, 140–224

[5] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[6] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[7] Chebotarev N. G., Meiman N. N., Problema Rausa–Gurvitsa dlya polinomov i tselykh funktsii, Trudy MIAN, 26, 1949 | MR | Zbl

[8] Ilyushin A. A., Kiiko I. A., “Novaya postanovka zadachi o flattere pologoi obolochki”, PMM, 58:3 (1994), 167–171 | MR | Zbl

[9] Ilyushin A. A., Kiiko I. A., “Kolebaniya pryamougolnoi plastiny, obtekaemoi sverkhzvukovym potokom gaza”, Vestn. MGU. Ser. 1. Matem., mekh., 1994, no. 4, 40–44 | MR | Zbl

[10] Ilyushin A. A., Kiiko I. A., “Zakon ploskikh sechenii v sverkhzvukovoi aerodinamike i problema panelnogo flattera”, Izv. RAN. Ser. mekh. tv. tela, 1995, no. 6, 138–142 | MR

[11] Algazin S. D., Kiiko I. A., “Chislenno-analiticheskoe issledovanie flattera plastiny proizvolnoi formy v plane”, PMM, 61:1 (1997), 171–174 | MR | Zbl

[12] Algazin S. D., Kiiko I. A., “Issledovanie sobstvennykh znachenii operatora v zadachakh panelnogo flattera”, Izv. RAN. Ser. mekh. tv. tela, 1999, no. 1, 170–176

[13] Movchan A. A., “O kolebaniyakh plastiny, dvizhuscheisya v gaze”, PMM, 20:2 (1956), 211–222 | MR | Zbl

[14] Movchan A. A., “Ob ustoichivosti paneli, dvizhuscheisya v gaze”, PMM, 21:2 (1957), 231–243 | MR

[15] Artamonov N. V., “Dostatochnye usloviya ogranichennosti reshenii odnogo klassa differentsialnykh uravnenii vtorogo poryadka v gilbertovom prostranstve”, Dokl. RAN, 381:3 (2001), 295–297 | MR | Zbl

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[17] Khille E., Fillips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[18] Krein S. G., Petunin Yu. I., “Shkaly banakhovykh prostranstv”, UMN, 21:2 (1966), 89–168 | MR | Zbl

[19] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985 | Zbl