Estimates of solutions of certain  classes of  second-order differential
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1113-1123
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Linear second-order differential equations
of the form
$$
u''(t)+(B+iD)u'(t)+(T+iS)u(t)=0
$$
in a Hilbert space are studied. Under certain conditions on the (generally speaking,
unbounded) operators $T$, $S$, $B$ and $D$ the correct solubility of the equation in the “energy” space is proved and best possible  (in the general case) estimates of the solutions on the half-axis are obtained.
			
            
            
            
          
        
      @article{SM_2003_194_8_a0,
     author = {N. V. Artamonov},
     title = {Estimates of solutions of certain  classes of  second-order differential},
     journal = {Sbornik. Mathematics},
     pages = {1113--1123},
     publisher = {mathdoc},
     volume = {194},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_8_a0/}
}
                      
                      
                    N. V. Artamonov. Estimates of solutions of certain classes of second-order differential. Sbornik. Mathematics, Tome 194 (2003) no. 8, pp. 1113-1123. http://geodesic.mathdoc.fr/item/SM_2003_194_8_a0/
