Uniqueness of liftings of maximal commutative subalgebras of the~Poisson--Lie
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1105-1111
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that each generalized Mishchenko–Fomenko
subalgebra of the Poisson algebra of the Lie algebra ${{\mathfrak{gl}}_n({\mathbb C})}$
can be lifted to a unique commutative subalgebra of the enveloping algebra.
@article{SM_2003_194_7_a8,
author = {A. A. Tarasov},
title = {Uniqueness of liftings of maximal commutative subalgebras of {the~Poisson--Lie}},
journal = {Sbornik. Mathematics},
pages = {1105--1111},
publisher = {mathdoc},
volume = {194},
number = {7},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a8/}
}
A. A. Tarasov. Uniqueness of liftings of maximal commutative subalgebras of the~Poisson--Lie. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1105-1111. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a8/