Lie algebroids: spectral sequences and signature
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1079-1103

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any transitive Lie algebroid $L$ on a compact oriented connected manifold with unimodular isotropy Lie algebras and trivial monodromy the cohomology algebra is a Poincaré algebra with trivial signature. Examples of such algebroids are algebroids on simply connected manifolds, algebroids such that the outer automorphism group of the isotropy Lie algebra is equal to its inner automorphism group, or such that the adjoint Lie algebra bundle $g$ induces a trivial homology bundle $H^*( g)$ in the category of flat bundles.
@article{SM_2003_194_7_a7,
     author = {J. Kubarski and A. S. Mishchenko},
     title = {Lie algebroids: spectral sequences and signature},
     journal = {Sbornik. Mathematics},
     pages = {1079--1103},
     publisher = {mathdoc},
     volume = {194},
     number = {7},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/}
}
TY  - JOUR
AU  - J. Kubarski
AU  - A. S. Mishchenko
TI  - Lie algebroids: spectral sequences and signature
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1079
EP  - 1103
VL  - 194
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/
LA  - en
ID  - SM_2003_194_7_a7
ER  - 
%0 Journal Article
%A J. Kubarski
%A A. S. Mishchenko
%T Lie algebroids: spectral sequences and signature
%J Sbornik. Mathematics
%D 2003
%P 1079-1103
%V 194
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/
%G en
%F SM_2003_194_7_a7
J. Kubarski; A. S. Mishchenko. Lie algebroids: spectral sequences and signature. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1079-1103. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/