Lie algebroids: spectral sequences and signature
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1079-1103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for any transitive Lie algebroid $L$ on a compact oriented connected manifold with unimodular isotropy Lie algebras and trivial monodromy the cohomology algebra is a Poincaré algebra with trivial signature. Examples of such algebroids are algebroids on simply connected manifolds, algebroids such that the outer automorphism group of the isotropy Lie algebra is equal to its inner automorphism group, or such that the adjoint Lie algebra bundle $g$ induces a trivial homology bundle $H^*( g)$ in the category of flat bundles.
@article{SM_2003_194_7_a7,
     author = {J. Kubarski and A. S. Mishchenko},
     title = {Lie algebroids: spectral sequences and signature},
     journal = {Sbornik. Mathematics},
     pages = {1079--1103},
     year = {2003},
     volume = {194},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/}
}
TY  - JOUR
AU  - J. Kubarski
AU  - A. S. Mishchenko
TI  - Lie algebroids: spectral sequences and signature
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1079
EP  - 1103
VL  - 194
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/
LA  - en
ID  - SM_2003_194_7_a7
ER  - 
%0 Journal Article
%A J. Kubarski
%A A. S. Mishchenko
%T Lie algebroids: spectral sequences and signature
%J Sbornik. Mathematics
%D 2003
%P 1079-1103
%V 194
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/
%G en
%F SM_2003_194_7_a7
J. Kubarski; A. S. Mishchenko. Lie algebroids: spectral sequences and signature. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1079-1103. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a7/

[1] Pradines J., “Théorie de Lie pour les groupoides differentiables”, Atti del Convegno Internazionale di Geometria Differenziale (Bologna, 28–30, IX, 1967), Monograf, Bologna, 1969, 1–4

[2] Kubarski J., Lie algebroid of a principal fibre bundle, Univ. Claude-Bernard, Lyon, 1989 | MR

[3] Libermann P., “Sur les prolongements des fibres principaux et les groupoides differentiables”, Seminaire de Mathematiques superieures - été, Analyse Globale (Montreal, 1969), Univ. Montreal, Montreal, 1971, 1–70 | MR

[4] Kubarski J., “Bott's vanishing theorem for regular Lie algebroids”, Trans. Amer. Math. Soc., 348:6 (1996), 2151–2167 | DOI | MR | Zbl

[5] Molino P., “Etude des feuilletages transversalement complets et applications”, Ann. Sci. École Norm. Sup. (4), 10:3 (1977), 289–307 | MR | Zbl

[6] Molino P., Riemannian foliations, Progr. Math., 73, Birkhäuser, Boston, MA, 1988 | MR | Zbl

[7] Kubarski J., “A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup”, Rev. Mat. Complut., 4:2/3 (1991), 159–176 | MR | Zbl

[8] Coste A., Dazord P., Weinstein A., Groupoides symplectiques, Univ. Claude-Bernard, Lyon, 1987 | MR | Zbl

[9] Herz J. C., “Pseudo-algèbres de Lie. I, II”, C. R. Acad. Sci. Paris Sér. I Math., 263 (1953), 1935–1937 ; 2289–2291 | MR | Zbl

[10] Huebschmann J., “Poisson cohomology and quantization”, J. Reine Angew. Math., 408 (1990), 57–113 | MR | Zbl

[11] Balcerzak B., Kubarski J., Walas W., “Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid”, Lie algebroids and related topics in differential geometry, Banach Center Publ., 54, Polish Acad. Sci., Warsaw, 2001, 71–97 | MR | Zbl

[12] Mackenzie K., Lie groupoides and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Ser., 124, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[13] Kubarski J., “Weil algebra and secondary characteristic homomorphism of regular Lie algebroids”, Lie algebroids and related topics in differential geometry, Banach Center Publ., 54, Polish Acad. Sci., Warsaw, 2001, 135–173 | MR | Zbl

[14] Kubarski J., “Invariant cohomology of regular Lie algebroids”, Proceedings of the VII International Colloquium on Differential Geometry (Spain 26–30 July, 1994), World Scientific, Singapure, 1995, 137–151 | MR | Zbl

[15] Maxim-Raileanu L., “Cohomology of Lie algebroids”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 22:2 (1976), 197–199 | MR | Zbl

[16] Atiyah M., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85:1 (1957), 181–207 | DOI | MR | Zbl

[17] Almeida R., Molino P., “Suites d'Atiyah et feuilletages transversalement complets”, C. R. Acad. Sci. Paris Sér. I Math., 300 (1985), 13–15 | MR | Zbl

[18] Kubarski J., The Chern–Weil homomorphism of regular Lie algebroids, Univ. Claude-Bernard, Lyon, 1991 | Zbl

[19] Kubarski J., “Poincaré duality for transitive unimodular invariantly oriented Lie algebroids”, Topology Appl., 121 (2002), 333–355 | DOI | MR | Zbl

[20] Kubarski J., “Fibre integral in regular Lie algebroids”, New Developments in Differential Geometry, Proceedings of the Conference on Differential Geometry (Budapest, Hungary, July 27–30, 1996), Kluwer Acad. Publ., New York, 1999, 173–202 | MR | Zbl

[21] Chern S. S., Hirzebruch F., Serre J.-P., “On the index of a fibered manifold”, Proc. Amer. Math. Soc., 8 (1957), 587–596 | DOI | MR | Zbl

[22] Bott R., Tu L. W., Differential forms in algebraic topology, Geom. Topol. Monogr., 82, Springer-Verlag, New York, 1982 | MR | Zbl

[23] Dupont J. L., Curvature and characteristic classes, Lecture Notes in Math., 640, Springer-Verlag, New York, 1978 | MR | Zbl

[24] Aziz El Kacimi-Alouni, Sregiescu V., Hector G., “La cohomologie basique d'un feuilletage Riemannien est de dimension finie”, Math. Z., 188 (1985), 593–599 | DOI | MR | Zbl

[25] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[26] Greub W., Halperin S., Vanstone R., Connections, curvature, and cohomology, vol. III, Acad. Press, New York, 1976 | MR | Zbl

[27] Humphreys J. E., Linear algebraic groups, Springer-Verlag, New York, 1975 | MR | Zbl