Coxeter transformations and the geometry of the data matrix
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1069-1077 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Coxeter conjugation of an arbitrary set of square matrices is introduced and David matrices are defined. It is proved that the Coxeter conjugate of the set of all complex symmetric matrices coincides with the set of all complex David matrices.
@article{SM_2003_194_7_a6,
     author = {V. A. Kolmykov},
     title = {Coxeter transformations and the~geometry of the~data matrix},
     journal = {Sbornik. Mathematics},
     pages = {1069--1077},
     year = {2003},
     volume = {194},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a6/}
}
TY  - JOUR
AU  - V. A. Kolmykov
TI  - Coxeter transformations and the geometry of the data matrix
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1069
EP  - 1077
VL  - 194
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a6/
LA  - en
ID  - SM_2003_194_7_a6
ER  - 
%0 Journal Article
%A V. A. Kolmykov
%T Coxeter transformations and the geometry of the data matrix
%J Sbornik. Mathematics
%D 2003
%P 1069-1077
%V 194
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a6/
%G en
%F SM_2003_194_7_a6
V. A. Kolmykov. Coxeter transformations and the geometry of the data matrix. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1069-1077. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a6/

[1] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR | Zbl

[2] Kats V., Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[3] Kolmykov V. A., “Preobrazovanie Kokstera i kvazikolchany”, Matem. zametki, 72:3 (2002), 472–473 | MR | Zbl

[4] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR

[5] Dlab V., Ringel C. M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 173, Amer. Math. Soc., Providence, RI, 1976 | MR

[6] Dlab V., Ringel C. M., “On algebras of finite representation type”, J. Algebra, 33 (1978), 306–394 | DOI | MR

[7] Ringel C. M., “Representations of K-species and bimodules”, J. Algebra, 41 (1978), 269–302 | DOI | MR