The property of compactness of the quasi-linearly perturbed
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1055-1068 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For maps $u\colon M\to M'$ of closed Riemannian manifolds a study is made of the quasi-linearly perturbed harmonic-map equation $$ \tau(u)(x)=\mathsf G(x,u(x))\cdot du(x)+\mathsf g(x,u(x)), \qquad x\in M. $$ In the case of a non-positively curved manifold $M'$ and a small linear part of the perturbation $\mathsf G$ it is proved that the space of classical solutions in a fixed homotopy class is compact. The proof is based on a uniform estimate for the norm of the differential of a solution of the perturbed equation in terms of its energy and the $C^1$-norms of $\mathsf G$ and $\mathsf g$. The crux of this analysis is an inequality called the monotonicity property.
@article{SM_2003_194_7_a5,
     author = {G. Yu. Kokarev},
     title = {The property of compactness of the~quasi-linearly perturbed},
     journal = {Sbornik. Mathematics},
     pages = {1055--1068},
     year = {2003},
     volume = {194},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a5/}
}
TY  - JOUR
AU  - G. Yu. Kokarev
TI  - The property of compactness of the quasi-linearly perturbed
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1055
EP  - 1068
VL  - 194
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a5/
LA  - en
ID  - SM_2003_194_7_a5
ER  - 
%0 Journal Article
%A G. Yu. Kokarev
%T The property of compactness of the quasi-linearly perturbed
%J Sbornik. Mathematics
%D 2003
%P 1055-1068
%V 194
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a5/
%G en
%F SM_2003_194_7_a5
G. Yu. Kokarev. The property of compactness of the quasi-linearly perturbed. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1055-1068. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a5/

[1] Kokarev G. Yu., “O kompaktnosti mnozhestva reshenii kvazilineino vozmuschennogo uravneniya garmonicheskikh otobrazhenii”, UMN, 57:5 (2002), 155–156 | MR | Zbl

[2] Kappeler T., Kuksin S., Schröeder V., Perturbations of the harmonic map equation, Preprint No 02-01, 2001 ; Commum. Contemp. Math., Inst. Math., Univ. Zürich, Zürich (to appear) | MR

[3] Kokarev G. Yu., Kuksin S. B., “Kvazilineinye ellipticheskie differentsialnye uravneniya na otobrazheniyakh mnogoobrazii. I”, Algebra i analiz, 15:4 (2003), 1–60 | MR | Zbl

[4] Eells J., Lemaire L., Selected topics in harmonic maps, CBMS Reg. Conf. Ser. Math., 50, Amer. Math. Soc., Providence, RI, 1983 | MR

[5] Shoen R., Yau S.-T., “Compact group actions and the topology of manifolds with non-positive sectional curvature”, Topology, 18 (1979), 361–380 | DOI | MR

[6] Ding W. Y., “Blow-up of solutions of heat flow for harmonic maps”, Adv. Math., 19 (1990), 80–92 | MR | Zbl

[7] Sacks J., Uhlenbeck K., “The existence of minimal immersions of 2-sphere”, Ann. of Math., 113 (1981), 1–24 | DOI | MR | Zbl

[8] Eells J., Sampson J. H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl

[9] Lin F.-H., “Gradient estimates and blow-up analysis for stationary harmonic maps”, Ann. of Math. (2), 149 (1999), 785–829 | DOI | MR | Zbl

[10] Price P., “A monotonocity formula for Yang–Mills fields”, Manuscripta Math., 43 (1983), 131–166 | DOI | MR | Zbl

[11] Shoen R., “Analytic aspects of the harmonic map problem”, Math. Sci. Res. Inst. Publ., 2 (1984), 321–358 | MR

[12] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[13] Kappeler T., Kuksin S., Schröeder V., Poincaré inequality for maps into closed manifolds of negative sectional curvature, Preprint, Inst. Math., Univ. Zürich, Zürich, 2002