@article{SM_2003_194_7_a5,
author = {G. Yu. Kokarev},
title = {The property of compactness of the~quasi-linearly perturbed},
journal = {Sbornik. Mathematics},
pages = {1055--1068},
year = {2003},
volume = {194},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a5/}
}
G. Yu. Kokarev. The property of compactness of the quasi-linearly perturbed. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1055-1068. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a5/
[1] Kokarev G. Yu., “O kompaktnosti mnozhestva reshenii kvazilineino vozmuschennogo uravneniya garmonicheskikh otobrazhenii”, UMN, 57:5 (2002), 155–156 | MR | Zbl
[2] Kappeler T., Kuksin S., Schröeder V., Perturbations of the harmonic map equation, Preprint No 02-01, 2001 ; Commum. Contemp. Math., Inst. Math., Univ. Zürich, Zürich (to appear) | MR
[3] Kokarev G. Yu., Kuksin S. B., “Kvazilineinye ellipticheskie differentsialnye uravneniya na otobrazheniyakh mnogoobrazii. I”, Algebra i analiz, 15:4 (2003), 1–60 | MR | Zbl
[4] Eells J., Lemaire L., Selected topics in harmonic maps, CBMS Reg. Conf. Ser. Math., 50, Amer. Math. Soc., Providence, RI, 1983 | MR
[5] Shoen R., Yau S.-T., “Compact group actions and the topology of manifolds with non-positive sectional curvature”, Topology, 18 (1979), 361–380 | DOI | MR
[6] Ding W. Y., “Blow-up of solutions of heat flow for harmonic maps”, Adv. Math., 19 (1990), 80–92 | MR | Zbl
[7] Sacks J., Uhlenbeck K., “The existence of minimal immersions of 2-sphere”, Ann. of Math., 113 (1981), 1–24 | DOI | MR | Zbl
[8] Eells J., Sampson J. H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[9] Lin F.-H., “Gradient estimates and blow-up analysis for stationary harmonic maps”, Ann. of Math. (2), 149 (1999), 785–829 | DOI | MR | Zbl
[10] Price P., “A monotonocity formula for Yang–Mills fields”, Manuscripta Math., 43 (1983), 131–166 | DOI | MR | Zbl
[11] Shoen R., “Analytic aspects of the harmonic map problem”, Math. Sci. Res. Inst. Publ., 2 (1984), 321–358 | MR
[12] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[13] Kappeler T., Kuksin S., Schröeder V., Poincaré inequality for maps into closed manifolds of negative sectional curvature, Preprint, Inst. Math., Univ. Zürich, Zürich, 2002