Continuity in $\Lambda$-variations of functions of several variables
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1009-1034 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A test for the coincidence in the multidimensional case of the class of functions of bounded $\Lambda$-variation with the class of functions continuous in $\Lambda$-variation is obtained for a large variety of sequences $\Lambda$ (such that the ratio $\lambda_{2n}/\lambda_n$ has a limit as $n\to\infty$).
@article{SM_2003_194_7_a3,
     author = {O. S. Dragoshanskii},
     title = {Continuity in $\Lambda$-variations of functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {1009--1034},
     year = {2003},
     volume = {194},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a3/}
}
TY  - JOUR
AU  - O. S. Dragoshanskii
TI  - Continuity in $\Lambda$-variations of functions of several variables
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 1009
EP  - 1034
VL  - 194
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a3/
LA  - en
ID  - SM_2003_194_7_a3
ER  - 
%0 Journal Article
%A O. S. Dragoshanskii
%T Continuity in $\Lambda$-variations of functions of several variables
%J Sbornik. Mathematics
%D 2003
%P 1009-1034
%V 194
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a3/
%G en
%F SM_2003_194_7_a3
O. S. Dragoshanskii. Continuity in $\Lambda$-variations of functions of several variables. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1009-1034. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a3/

[1] Waterman D., “On convergence of Fourier series of functions of bounded generalized variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] Waterman D., “Generalized bounded variation – recent results and open questions”, Real Anal. Exchange, 5 (1979–1980), 148–150

[3] Foran J., Fleissner R., “A note on $\Lambda$-bounded variation”, Real Anal. Exchange, 4 (1978–1979), 185–191 | MR

[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Ser. matem., 1987, no. 10, 66–68 | MR | Zbl

[5] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1987

[6] Bakhvalov A. N., “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh i skhodimost ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl