@article{SM_2003_194_7_a3,
author = {O. S. Dragoshanskii},
title = {Continuity in $\Lambda$-variations of functions of several variables},
journal = {Sbornik. Mathematics},
pages = {1009--1034},
year = {2003},
volume = {194},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a3/}
}
O. S. Dragoshanskii. Continuity in $\Lambda$-variations of functions of several variables. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 1009-1034. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a3/
[1] Waterman D., “On convergence of Fourier series of functions of bounded generalized variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl
[2] Waterman D., “Generalized bounded variation – recent results and open questions”, Real Anal. Exchange, 5 (1979–1980), 148–150
[3] Foran J., Fleissner R., “A note on $\Lambda$-bounded variation”, Real Anal. Exchange, 4 (1978–1979), 185–191 | MR
[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Ser. matem., 1987, no. 10, 66–68 | MR | Zbl
[5] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1987
[6] Bakhvalov A. N., “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh i skhodimost ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl