New relations for Morse–Smale systems with trivially
Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 979-1007 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New relations are established between the periodic structure of Morse–Smale systems (flows or diffeomorphisms) and the genus of Heegaard splittings of the supporting manifold. A sharp lower estimate is found for the number of non-closed heteroclinic curves of certain Morse–Smale diffeomorphisms on lens spaces.
@article{SM_2003_194_7_a2,
     author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev},
     title = {New relations for {Morse{\textendash}Smale} systems with trivially},
     journal = {Sbornik. Mathematics},
     pages = {979--1007},
     year = {2003},
     volume = {194},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_7_a2/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - New relations for Morse–Smale systems with trivially
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 979
EP  - 1007
VL  - 194
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_7_a2/
LA  - en
ID  - SM_2003_194_7_a2
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T New relations for Morse–Smale systems with trivially
%J Sbornik. Mathematics
%D 2003
%P 979-1007
%V 194
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2003_194_7_a2/
%G en
%F SM_2003_194_7_a2
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev. New relations for Morse–Smale systems with trivially. Sbornik. Mathematics, Tome 194 (2003) no. 7, pp. 979-1007. http://geodesic.mathdoc.fr/item/SM_2003_194_7_a2/

[1] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[2] Franks J., “The period structure of non-singular Morse–Smale flows”, Comment. Math. Helv., 53 (1978), 279–294 | DOI | MR | Zbl

[3] Asimov D., “Round handles and non-singular Morse–Smale flows”, Ann. of Math. (2), 102 (1975), 41–54 | DOI | MR | Zbl

[4] Morgan J. W., “Non-singular Morse–Smale flows on 3-manifolds”, Topology, 18:1 (1979), 41–53 | DOI | MR | Zbl

[5] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten I”, Invent. Math., 3 (1967), 308–333 | DOI | MR | Zbl

[6] Fleitas G., “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 | DOI | MR | Zbl

[7] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17 | MR | Zbl

[8] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl

[9] Bonatti Ch., Grines V. Z., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[10] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 14 (1975), 109–132 | DOI | MR | Zbl

[11] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl

[12] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[13] Anosov D. V., “Iskhodnye ponyatiya”, Dinamich. sistemy 1, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 1, ed. D. V. Anosov, VINITI, M., 1985, 156–178

[14] Anosov D. V., “Elementarnaya teoriya”, Dinamich. sistemy 1, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 1, ed. D. V. Anosov, VINITI, M., 1985, 178–204

[15] Anosov D. V., Solodov V. V., “Giperbolicheskie mnozhestva”, Dinamich. sistemy – 9, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 66, ed. D. V. Anosov, VINITI, M., 1991, 12–99 | MR | Zbl

[16] Aranson S. Kh., Grines V. Z., “Kaskady na povepkhnostyakh”, Dinamich. sistemy – 9, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 66, ed. D. V. Anosov, VINITI, M., 1991, 148–187 | MR | Zbl

[17] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR | Zbl

[18] Moise Ed. E., Geometric topology in dimensions 2 and 3, Springer-Verlag, New York, 1977 | MR | Zbl

[19] Keldysh L. V., Topologicheskie vlozheniya v evklidovo prostranstvo, Trudy MIAN, 81, Nauka, M., 1966 | Zbl

[20] Hempel J., 3-manifolds, Ann. of Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976 | MR | Zbl

[21] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Matem. zametki, 74:3 (2003), 369–386 | MR | Zbl