On the number of crossings of a strip by sample paths of a random walk
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 927-939 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact expressions are obtained for the distribution of the total number of crossings of a strip by sample paths of a random walk whose jumps have a two-sided geometric distribution. The distribution of the number of crossings during a finite time interval is found in explicit form for walks with jumps taking the values $\pm1$. A limit theorem is proved for the joint distribution of the number of crossings of an expanding strip on a finite (increasing) time interval and the position of the walk at the end of this interval, and the corresponding limit distribution is found.
@article{SM_2003_194_6_a7,
     author = {V. I. Lotov and N. G. Orlova},
     title = {On the number of crossings of a~strip by sample paths of a~random walk},
     journal = {Sbornik. Mathematics},
     pages = {927--939},
     year = {2003},
     volume = {194},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a7/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - N. G. Orlova
TI  - On the number of crossings of a strip by sample paths of a random walk
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 927
EP  - 939
VL  - 194
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a7/
LA  - en
ID  - SM_2003_194_6_a7
ER  - 
%0 Journal Article
%A V. I. Lotov
%A N. G. Orlova
%T On the number of crossings of a strip by sample paths of a random walk
%J Sbornik. Mathematics
%D 2003
%P 927-939
%V 194
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a7/
%G en
%F SM_2003_194_6_a7
V. I. Lotov; N. G. Orlova. On the number of crossings of a strip by sample paths of a random walk. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 927-939. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a7/

[1] Lotov V. I., “Ob odnom podkhode v dvugranichnykh zadachakh”, Statistika i upravlenie sluchainymi protsessami, Nauka, M., 1989, 117–121 | MR

[2] Gikhman I. I., “Asimptotichni rozpodili chisla peretiniv vipadkovoyu funktsieyu granitsi danoi oblasti”, Visn. Kiiv. un-tu. Ser. astron., matem., mekhan., 1:1 (1958), 25–46

[3] Skorokhod A. V., Slobodenyuk N. G., Predelnye teoremy dlya sluchainykh bluzhdanii, Naukova dumka, Kiev, 1970 | MR | Zbl

[4] Chung K. L., Hunt G. A., “On the zeros of $\sum_1^n\pm1$”, Ann. of Math. (2), 50:2 (1949), 385–400 | DOI | MR | Zbl

[5] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[6] Lotov V. I., “Asimptoticheskii analiz raspredelenii v dvugranichnykh zadachakh. I”, Teoriya veroyatnostei i ee prim., 24:3 (1979), 475–485 | MR | Zbl

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[8] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR