Schr\"odinger operators with singular potentials and magnetic fields
Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 897-917

Voir la notice de l'article provenant de la source Math-Net.Ru

A formal Schrödinger operator of the form $$ H=\biggl(-i\frac\partial{\partial x}+A(x)\biggr)^2+V(x), $$ in ${\mathbb R}^d$ is considered, where $A$ is a bounded measurable vector-valued function and both $V(x)$ and $\operatorname{div}A$ are measures satisfying certain additional conditions. It is shown that one can give meaning to such an operator as a lower bounded self-adjoint operator in $L^2({\mathbb R}^d)$. The corresponding heat kernel is constructed and its small-time asymptotics are obtained. A rigorous Feynman path integral representation for the solutions of the heat and Schrödinger's equations with generator $H$ is given.
@article{SM_2003_194_6_a5,
     author = {V. N. Kolokoltsov},
     title = {Schr\"odinger operators with singular potentials and magnetic fields},
     journal = {Sbornik. Mathematics},
     pages = {897--917},
     publisher = {mathdoc},
     volume = {194},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2003_194_6_a5/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
TI  - Schr\"odinger operators with singular potentials and magnetic fields
JO  - Sbornik. Mathematics
PY  - 2003
SP  - 897
EP  - 917
VL  - 194
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2003_194_6_a5/
LA  - en
ID  - SM_2003_194_6_a5
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%T Schr\"odinger operators with singular potentials and magnetic fields
%J Sbornik. Mathematics
%D 2003
%P 897-917
%V 194
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2003_194_6_a5/
%G en
%F SM_2003_194_6_a5
V. N. Kolokoltsov. Schr\"odinger operators with singular potentials and magnetic fields. Sbornik. Mathematics, Tome 194 (2003) no. 6, pp. 897-917. http://geodesic.mathdoc.fr/item/SM_2003_194_6_a5/